Status of the crystallography beamlines at Diamond Light Source

  • D. R. Allan
  • S. P. Collins
  • G. Evans
  • D. Hall
  • K. McAuley
  • R. L. Owen
  • T. Sorensen
  • C. C. Tang
  • F. von Delft
  • A. Wagner
  • H. Wilhelm
Regular Article
Part of the following topical collections:
  1. Focus Point on Status of third-generation synchrotron crystallography beamlines: An overview

Abstract

X-ray crystallography is one of the most widely supported areas of science at Diamond Light Source and is the core technique on a third of the beamlines, accounting for almost a half of user publications across the whole facility. The life science community can currently call on six macromolecular crystallography beamlines (I02, I03, I04, I04-1, I23 and I24) to satisfy the increasing demand for the determination of macromolecular crystal structures from both the academic and pharmaceutical communities. In the physical sciences, there are four beamlines (I11, I15, I16 and I19) that cater for crystallographic studies ranging from the structure solution of small-molecule systems, the determination of structure at extreme conditions and the detailed analysis of the weak diffraction signal from magnetic structures. The physical science beamlines use both single-crystal and powder-diffraction techniques. All the crystallography beamlines at Diamond ensure they undergo a continuous programme of development to enable new technologies and the science they support. In this article, the current status of all the crystallography beamlines at Diamond will be discussed along with some examples of the science they have supported since they became operational.

References

  1. 1.
    E.M.H. Duke et al., AIP Conf. Proc. 1234, 165 (2010).CrossRefADSGoogle Scholar
  2. 2.
    E.M.H. Duke, L.N. Johnson, Proc. R. Soc. A 466, 3421 (2010) DOI:10.1098/rspa.2010.0448.CrossRefADSGoogle Scholar
  3. 3.
    F. Cipriani, F. Felisaz, L. Launer, J.-S. Aksoy, H. Casserotto, S. Cusack, M. Dallery, F. di-Chiaro, M. Guijarro, J. Huet, S. Larsen, M. Lentini, J. McCarthy, S. McSweeney, R. Ravelli, M. Renier, C. Taffut, A. Thompson, G.A. Leonard, M.A. Walsh, Acta Cryst. D 62, 1251 (2006).CrossRefGoogle Scholar
  4. 4.
    J. Ohana, L. Jacquamet, J. Joly, A. Bertoni, P. Taunier, L. Michel, P. Charrault, M. Pirocchi, P. Carpentier, F. Borel, R. Kahn, J.-L. Ferrer, J. Appl. Cryst. 37, 72 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Micco, G.W. Collie, A.G. Dale, S.A. Ohnmacht, I. Pazitna, M. Gunaratnam, A.P. Reszka, S.J. Neidle, Med. Chem. 7, 2959 (2013).CrossRefGoogle Scholar
  6. 6.
    G. Evans, D. Axford, R.L. Owen, Acta Cryst. D 67, 261 (2011).CrossRefGoogle Scholar
  7. 7.
    C. Porta, A. Kotecha, A. Burman, T. Jackson, J. Ren, S. Loureiro, I.M. Jones, E.E. Fry, D.I. Stuart, B. Charleston, PLoS Pathog 9, e1003255 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Kelly, S. Alcock, H. Patel, J. Phys.: Conf. Ser. 425, 052009 (2013).ADSGoogle Scholar
  9. 9.
    J. Marchal, A. Wagner, Nucl. Instrum. Methods Phys. Res. A 633, S121 (2011).CrossRefADSGoogle Scholar
  10. 10.
    S. Delagenière, P. Brenchereau, L. Launer, A.W. Ashton, R. Leal, S. Veyrier, J. Gabadinho, E.J. Gordon, S.D. Jones, K.E. Levik, S.M. McSweeney, S. Monaco, M. Nanao, D. Spruce, O. Svensson, M.A. Walsh, G.A. Leonard, Bioinformatics 27, 3186 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Nowell, S.A. Barnett, K.E. Christensen, S.J. Teat, D.R. Allan, J. Synchrotron Rad. 19, 435 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Argent, A. Greenaway, M. del Carmen Gimenez-Lopez, W. Lewis, H. Nowell, A.N. Khlobystov, N. Champness, M. Schroder, A.J. Blake, J. Am. Chem. Soc. 134, 55 (2012).CrossRefGoogle Scholar
  13. 13.
    M.D. Ward, Chem. Commun. 30, 4487 (2009).CrossRefGoogle Scholar
  14. 14.
    S.P. Collins, A. Bombardi, A.R. Marshall, J.H Williams, G. Barlow, A.G. Day, M.R. Pearson, R.J. Woolloscroft, R.D. Walton, G. Beutier, G. Nisbet, AIP Conf. Proc. 1234, 303 (2009).ADSGoogle Scholar
  15. 15.
    R.D. Johnson, P. Barone, A. Bombardi, R.J Bean, S. Picozzi, P.G. Radaelli, Y.S. Oh, S.W. Cheong, L.C. Chapon, Phys. Rev. Lett. 110, 217206 (2013).CrossRefADSGoogle Scholar
  16. 16.
    S.P. Thompson, J.E. Parker, J. Potter, T.P. Hill, A. Birt, T.M. Cobb, F. Yuan, C.C. Tang, Rev. Sci. Instrum. 80, 075107 (2009).CrossRefADSGoogle Scholar
  17. 17.
    M.T. Wharmby, J.P.S. Mowat, S.P. Thompson, P.A. Wright, J. Am. Chem. Soc. 133, 1266 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Basham, J. Filik, M.T. Wharmby, P.C.Y. Chang, B. El Kassaby, M. Gerring, A.W. Ashton, Data Analysis WorkbeNch (DAWN), to be published in J. Synchr. Radiat. (2015).Google Scholar
  19. 19.
    DAWN, Data Analysis WorkbeNch, http://www.dawnsci.org/.
  20. 20.
    T. Scheler, M. Marqués, Z. Konopková, C.L. Guillaume, R.T. Howie, E. Gregoryanz, Phys. Rev. Lett. 111, 215503 (2013).CrossRefADSGoogle Scholar
  21. 21.
    T. Kottke, D. Stalke, J. Appl. Cryst. 26, 615 (1993).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. R. Allan
    • 1
  • S. P. Collins
    • 1
  • G. Evans
    • 1
  • D. Hall
    • 1
  • K. McAuley
    • 1
  • R. L. Owen
    • 1
  • T. Sorensen
    • 1
  • C. C. Tang
    • 1
  • F. von Delft
    • 1
  • A. Wagner
    • 1
  • H. Wilhelm
    • 1
  1. 1.Diamond Light Source, Harwell Science and Innovation CampusDidcot, OxfordshireUK

Personalised recommendations