Abstract
In this work, an analytical investigation of the heat transfer for the microchannel heat sink (MCHS) cooled by different nanofluids (Cu, Al2O3, Ag, TiO2 in water and ethylene glycol as base fluids) is studied by the porous media approach and the Galerkin method and results are compared with numerical procedure. Response surface methodology (RSM) is applied to obtain the desirability of the optimum design of the channel geometry. The effective thermal conductivity and viscosity of the nanofluid are calculated by the Patel et al. and Khanafer et al. model, respectively, and MCHS is considered as a porous medium, as proposed by Kim and Kim. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The effects of the nanoparticles volume fraction, nanoparticle type and size, base fluid type, etc., on the temperature distribution, velocity and Nusselt number are considered. Results show that, by increasing the nanoparticles volume fraction, the Brownian movement of the particles, which carries the heat and distributes it to the surroundings, increases and, consequently, the difference between coolant and wall temperature becomes less.
This is a preview of subscription content, access via your institution.
Abbreviations
- A 1 :
-
Porosity ratio
- A 2 :
-
Thermal conductivity ratio
- A 3 :
-
Particle area ratio
- A pe :
-
Wetted area per volume
- C :
-
correction factor
- C p :
-
Specific heat in constant pressure
- \(\dot Q\) :
-
Volume flow rate of heat sink (m3/s)
- g 1–9 :
-
Constants in trial function
- Da:
-
Darcy number
- d p :
-
Nanoparticles diameter
- f :
-
Friction factor
- h :
-
Convection heat transfer coefficient
- K :
-
permeability
- k :
-
Thermal conductivity
- k b :
-
Boltzmann constant
- L :
-
length
- \(\tilde u\) :
-
Trial function
- δ:
-
Distance
- u m :
-
Mean fluid velocity
- W(x):
-
Weighted function
- X :
-
Horizontal axes coordinate
- Y :
-
Vertical axes coordinate
- V B :
-
Brownian velocity
- y :
-
Dimensionless vertical coordinate
- d f :
-
Fluid particle diameter
- α s :
-
channel aspect ratio
- μ :
-
viscosity
- ε :
-
porosity
- ρ :
-
density
- ReB :
-
Brownian Reynolds number
- N :
-
Number of channel
- Nu:
-
Nusselt number
- P :
-
pressure
- p :
-
Power law index
- Pr:
-
Prandtl number
- q w :
-
Heat flux
- Re:
-
Reynolds number
- R(x):
-
Residual function
- T :
-
Temperature
- U :
-
Dimensionless velocity
- u :
-
velocity
- ϕ :
-
Nanoparticles volume fraction
- θ :
-
Dimensionless temperature
- ν :
-
Kinematic viscosity
- ch:
-
channel
- f:
-
fluid
- fin:
-
fin
- nf:
-
nanofluid
- p:
-
particle
- hs:
-
heat sink
- s:
-
solid
- w:
-
wall
References
- 1.
D.B. Tuckerman, F.R. Pease, Digest of Technical Papers, in Symposium on VLSI Tech, Maui, HI (1983) pp. 60--61.
- 2.
M. Mahalingam, Proc. IEEE 73, 1396 (1985).
- 3.
T. Kishimoto, T. Ohsaki, in Proceedings of the 25th Electrics Components Conference (1986) pp. 595--601.
- 4.
R.J. Philips, in Microchannel Heat Sinks, edited by A. Bar-Cohen, A.D. Kraus, Vol. 2 (ASME, New York, 1990) chapt. 3.
- 5.
J.C.Y. Koh, R. Colony, Int. Commun. Heat Mass Transfer 13, 89 (1986).
- 6.
S.J. Kim, D. Kim, D.Y. Lee, Int. J. Heat Mass Transfer 43, 1735 (2000).
- 7.
C.Y. Zhao, T.J. Lu, Int. J. Heat Mass Transfer 45, 4857 (2002).
- 8.
S. Kim, Heat Transfer Eng. 25, 37 (2004).
- 9.
K. Vafai, L. Zhu, Int. J. Heat Mass Transfer 42, 2287 (1999).
- 10.
K. Vafai, P.C. Huang, ASME J. Heat Transfer 116, 604 (1994).
- 11.
Tu-Chieh Hung, Yu-Xian Huang, Wei-Mon Yan, Int. J. Heat Mass Transfer 66, 235 (2013).
- 12.
P.C. Huang, K. Vafai, AIAA J. Thermophys. Heat Transfer 8, 563 (1994).
- 13.
A. Hadim, ASME J. Heat Transfer 116, 465 (1994).
- 14.
M.B. Bowers, I. Mudawar, ASME J. Electr. Packaging 116, 290 (1994).
- 15.
M. Ghazvini, H. Shokouhmand, Energy Convers. Manag. 50, 2373 (2009).
- 16.
X. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).
- 17.
E. Farsad, S.P. Abbasi, M.S. Zabihi, J. Sabbaghzadeh, Heat Mass Transfer 47, 479 (2011).
- 18.
C. Okhio, D. Hodges, J. Black, Cyber J. Multidisciplinary J. Sci. Technol. 12, 1 (2010).
- 19.
Benjamin Rimbault, Cong Tam Nguyen, Nicolas Galanis, Int. J. Therm. Sci. 84, 275 (2014).
- 20.
S. Kakac, A. Pramuanjaroenkijb, Int. J. Heat Mass Transfer 52, 3187 (2009).
- 21.
Yong H. Kim, Woo Chong Chun, Jin Taek Kim, Bock Choon Pak, Byoung Joon Baek, KSME Int. J. 12, 709 (1998).
- 22.
G. Huminic, A. Huminic, Renew. Sustain. Energy Rev. 16, 5625 (2012).
- 23.
E. Mat Tokit, H.A. Mohammed, M.Z. Yusoff, Int. Commun. Heat Mass Transfer 39, 1595 (2012).
- 24.
M. Mital, Appl. Therm. Eng. 52, 321 (2013).
- 25.
C.J. Ho, L.C. Wei, Z.W. Li, Appl. Therm. Eng. 30, 96 (2010).
- 26.
M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, J. Harting, Appl. Therm. Eng. 36, 260 (2012).
- 27.
X.D. Wang, B. An, J.L. Xu, Energy Convers. Manag. 65, 528 (2013).
- 28.
O. Pourmehran, M. Rahimi-Gorji, M. Gorji-Bandpy, D.D. Ganji, Alex. Eng. J. DOI:10.1016/j.aej.2014.11.002 (2014).
- 29.
S.M. Aminossadati, A. Raisi, B. Ghasemi, Int. J. Non-Linear Mech. 46, 1373 (2011).
- 30.
M. Sheikholeslami, M. Hatami, G. Domairry, J. Taiwan Inst. Chem. Eng. 46, 43 (2015).
- 31.
M. Hatami, R. Nouri, D.D. Ganji, J. Mol. Liq. 187, 294 (2013).
- 32.
P. Nitiapiruk, M. Sheikholeslami, D.D. Ganji, J. Mol. Liq. 195, 230 (2014).
- 33.
M. Rahimi-Gorji, O. Pourmehran, D.D. Ganji, Ain Shams Enj. J. DOI:10.1016/j.asej.2014.10.016 (2014).
- 34.
S.P. Jang, S.U.S. Choi, Appl. Therm. Eng. 26, 2457 (2006).
- 35.
Mohsen Sheikholeslami, Davood Domiri Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015).
- 36.
J. Koo, C. Kleinstreuer, Int. J. Heat Mass Transfer 48, 2652 (2005).
- 37.
S.P. Jang, S.U.S. Choi, Appl. Therm. Eng. 26, 2457 (2006).
- 38.
M. Hatami, M. Sheikholeslami, M. Hosseini, D.D. Ganji, J. Mol. Liq. 194, 251 (2014).
- 39.
R. Chein, J. Chuang, Int. J. Therm. Sci. 46, 57 (2007).
- 40.
J. Lee, I. Mudawar, Int. J. Heat Mass Transfer 50, 452 (2007).
- 41.
M.N. Ozisik, Heat Conduction, 2nd edition (John Wiley & Sons Inc, USA, 1993).
- 42.
S. Kiwan, Int. J. Therm. Sci. 46, 1046 (2007).
- 43.
M. Sheikholeslami, D.D. Ganji, Powder Technol. 235, 873 (2013).
- 44.
M. Sheikholeslami, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015).
- 45.
S. Kiwan, Trans Porous Media 67, 17 (2007).
- 46.
M. Hatami, D.D. Ganji, Particuology 16, 206 (2014).
- 47.
B. Vaferi, V. Salimi, D. Dehghan Baniani, A. Jahanmiri, S. Khedri, J. Petrol. Sci. Eng. 98, 156 (2012).
- 48.
M. Hatami, A. Hasanpour, D.D. Ganji, Energy Convers. Manag. 74, 9 (2013).
- 49.
M. Sheikholeslami, M. Hatami, D.D. Ganji, Powder Technol. 246, 327 (2013).
- 50.
M.N. Bouaziz, A. Aziz, Energy Convers. Manag. 51, 76 (2010).
- 51.
A. Aziz, M.N. Bouaziz, Energy Convers. Manag. 52, 2876 (2011).
- 52.
F.A. Hendi, A.M. Albugami, J. King Saud. Uni-Sci. 22, 37 (2010).
- 53.
F. Mohammadi, M.M. Hosseini, S.T. Mohyud-Din, Int. J. Syst. Sci. 42, 579 (2011).
- 54.
R. Nouri, D.D. Ganji, M. Hatami, Prop. Pow. Res. 3, 96 (2014).
- 55.
M. Hatami, D.D. Ganji, Energy Convers. Manag. 78, 347 (2014).
- 56.
S.J. Kim, D. Kim, J. Heat Transfer 121, 639 (1999).
- 57.
R.W. Knight, D.J. Hall, J.S. Goodling, R.C. Jaeger, IEEE Trans. Compon. Hybrid. Manuf. Technol. 15, 832 (1992).
- 58.
D.B. Tuckerman, R.F. Pease, IEEE Elect. Dev. Lett. 2, 126 (1981).
- 59.
K. Vafai, C.L. Tien, Int. J. Heat Mass Transfer 24, 195 (1981).
- 60.
K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 446, 3639 (2003).
- 61.
N. Masoumi, N. Sohrabi, A. Behzadmehr, J. Phys. D 42, 055501 (2009).
- 62.
L. Miettinen, P. Kekäläinen, J. Merikoski, J. Timonen, Int. J. Thermophys. 30, 1902 (2009).
- 63.
B.K. Reddy, C. Balaji, Int. J. Heat Mass Transfer 55, 3686 (2012).
- 64.
A. Aziz, M. Torabi, K. Zhang, Energy Convers. Manag. 74, 366 (2013).
- 65.
M. Torabi, Q.B. Zhang, Energy Convers. Manag. 66, 199 (2013).
- 66.
M. Torabi, A. Aziz, K. Zhang, Energy 51, 243 (2013).
- 67.
J.H. Lee, S.H. Lee, Ch.J. Choi, S.P. Jang, S.U.S. Choi, Int. J. Micro-Nano Scale Transport 1, 269 (2010).
- 68.
H.E. Patel, T. Sundarrajan, T. Pradeep, A. Dasgupta, N. Dasgupta, S.K. Das, Pramana J. Phys. 65, 863 (2005).
- 69.
J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).
- 70.
R. Prasher, E.P. Phelan, ASME J. Heat Transfer 128, 58 (2006).
- 71.
H.F. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008).
- 72.
Jelena Sekulić, Johan E. ten Elshof, Dave H.A. Blank, Langmuir 21, 508 (2005).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rahimi-Gorji, M., Pourmehran, O., Hatami, M. et al. Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis. Eur. Phys. J. Plus 130, 22 (2015). https://doi.org/10.1140/epjp/i2015-15022-8
Received:
Revised:
Accepted:
Published:
Keywords
- Heat Transfer
- Nusselt Number
- Response Surface Methodology
- Galerkin Method
- Friction Factor