Skip to main content
Log in

The motion of a thin liquid layer on the outer surface of a rotating cylinder

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We derive the shallow water equations describing the motion of a thin liquid film on the outer surface of a rotating cylinder. These equations are an analogue of the modified Boussinesq equations describing shallow water flows with constant vorticity. The standard multi-scale methods are employed to construct asymptotic equations in the long-wave approximation. These asymptotic equations are analyzed using the hodograph method. It is found that for the particular case of a dispersionless irrotational flow, the equations describing flows on the outer surface of a cylinder reduce to elliptic equations. Numerical evaluation of the exact solutions obtained shows that the asymptotic equations possess a rich variety of solutions representing various wave patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Seiden, P.J. Thomas, Rev. Mod. Phys. 83, 1323 (2011)

    Article  ADS  Google Scholar 

  2. J. Ashmore, A.E. Hosoi, H.A. Stone, J. Fluid Mech. 479, 65 (2003)

    Article  ADS  MATH  Google Scholar 

  3. E.S. Benilov, M.S. Benilov, N. Kopteva, J. Fluid Mech. 597, 91 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. E.S. Benilov, M.S. Benilov, S.G.B. O’Brien, J. Eng. Math. 63, 197 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. G.A. Leslie, S.K. Wilson, B.R. Duffy, J. Fluid Mech. 716, 51 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. S.T. Thoroddsen, L. Mahadevan, Exp. Fluids 23, 1 (1997)

    Article  Google Scholar 

  7. B.R. Duffy, S.K. Wilson, J. Fluid Mech. 394, 29 (1999)

    Article  ADS  MATH  Google Scholar 

  8. C.J. Noakes, J.R. King, D.S. Riley, Q. J. Mech. Appl. Math. 59, 163 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Preziosi, D.D. Joseph, J. Fluid Mech. 187, 99 (1988)

    Article  ADS  MATH  Google Scholar 

  10. U. Thiele, J. Fluid Mech. 671, 121 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. M. Villegas-Díaz, H. Power, D.S. Riley, J. Fluid Mech. 541, 317 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. S.K. Wilson, R. Hunt, B.R. Duffy, Q. J. Mech. Appl. Math. 55, 357 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. G.A. Leslie, S.K. Wilson, B.R. Duffy, Phys. Fluids 23, 062101 (2011)

    Article  ADS  Google Scholar 

  14. G.A. Leslie, S.K. Wilson, B.R. Duffy, Q. J. Mech. Appl. Math. 65, 483 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. L.W. Schwartz, D.E. Weidner, J. Eng. Math. 29, 91 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. P.L. Evans, L.W. Schwartz, R.V. Roy, Phys. Fluids 16, 2742 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Acrivos, B. Jin, J. Eng. Math. 50, 99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. V.V. Pukhnachev, J. Appl. Mech. Tech. Phys. 18, 344 (1977)

    Article  ADS  Google Scholar 

  19. M.A. Kelmanson, J. Fluid Mech. 633, 327 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. M. Chugunova, R.M. Taranet, Int. J. Differ. Equ. 2012, 570283 (2012)

    Google Scholar 

  21. E.A. Karabut, J. Appl. Mech. Tech. Phys. 48, 55 (2007)

    Article  ADS  Google Scholar 

  22. E.J. Hinch, M.A. Kelmanson, P.D. Metcalfe, Proc. R. Soc. London A 460, 2975 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. D. Badali, M. Chugunova, D.E. Pelinovsky, S. Pollack, arXiv:1101.3033v1 (2011)

  24. D. Takagi, H.E. Huppert, J. Fluid Mech. 647, 221 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. H.K. Moffatt, J. Mec. 16, 651 (1977)

    ADS  Google Scholar 

  26. K. Seshan (Editor), Handbook of Thin-film deposition techniques, 2nd edition (CRC Press, 2002)

  27. G.B. Whithem, Linear and nonlinear wave (John Willey & Sons Inc., New-York, London, Sydney, Toronto, 1974)

  28. D. Korteweg, G. de Vries, Philos. Mag. 395, 422 (1985)

    Google Scholar 

  29. L. Rayleigh, Proc. R. Soc. A 84, 247 (1910)

    Article  ADS  MATH  Google Scholar 

  30. A.C. Newell, Solitons in mathematics and physics (SIAM, 1985)

  31. L.V. Ovsyannikov, N.I. Makarenko, V.I. Nalimov, V.Yu. Liapidevskii, P.I. Plotnikov, I.V. Sturova, V.I. Bukreev, V.A. Vladimirov, Nonlinear Problems in the Theory of Surface and Internal Waves (Nauka, Novosibirsk, 1985) (in Russian)

  32. B.A. Trubnikov, S.K. Zhdanov, S.M. Zverev, Hydrodynamics of Unstable Media: General Theory and Applied Problems, 1st edition (CRC Press LLC, 1996)

  33. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, 1984)

  34. M.Yu. Zhukov, A.M. Morad, arXiv:1303.2327 (2013)

  35. V.A. Vladimirov, M.Yu. Zhukov, V.I. Yudovich, P.V. Denissenko, Matem. Mod. 13, 27 (2001)

    MATH  Google Scholar 

  36. M.A. Goldshtik, V.N. Shtern, N.I. Yavorsky, Viscous flows with paradoxical features (Novosibirsk, Nauka, 1989)

  37. E.V. Shiryaeva, V.A. Vladimirov, M.Yu. Zhukov, Phys. Rev. E 80, 041603 (2009)

    Article  ADS  Google Scholar 

  38. A.M. Abourabia, K.M. Hassan, A.M. Morad, Chaos Solitons Fractals 42, 1170 (2009)

    Article  ADS  MATH  Google Scholar 

  39. P.A. Clarkson, A.S. Fokas, M.J. Ablowitz, SIAM J. Appl. Math. 49, 1188 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Senashov, A. Yakhno, SIGMA 8, 071 (2012)

    MathSciNet  Google Scholar 

  41. B.L. Rozhdestvenskii, N.N. Yanenko, Systems of quasilinear equations and their application to gas dynamics (American Mathematical Society, Providence, 1983)

  42. M. Abramowitz, I. Stegun (Editors), Handbook of mathematical functions (National Bureau of Standards, 1972)

  43. E.V. Shiryaeva, M.Yu. Zhukov, arXiv:1410.2832 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Morad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morad, A.M., Zhukov, M.Y. The motion of a thin liquid layer on the outer surface of a rotating cylinder. Eur. Phys. J. Plus 130, 8 (2015). https://doi.org/10.1140/epjp/i2015-15008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15008-6

Keywords

Navigation