Skip to main content
Log in

Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

General solutions for the dimensionless velocity corresponding to the unsteady radiative MHD free convection flow of an incompressible viscous fluid over a moving plate with mass diffusion and slip/no-slip conditions are established by combining the Laplace transform technique with the homotopy perturbation method. Internal dissipation is neglected but the heat absorption/generation and Soret effects are considered. The results that have been obtained can generate exact solutions for any motion with technical relevance of this type. Three special cases are considered and some known results from the literature are recovered. Influence of slip parameter and of some pertinent parameters on the fluid motion is graphically underlined and discussed in the case of the uniform velocity of the plate. The required time to reach the steady state for motions due to sine and cosine oscillations of the plate is also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jaluria, Natural convection heat and mass transfer (Pergamon Press, 1980)

  2. W. Kays, M. Crawford, B. Weigand, Convection heat and mass transfer (McGraw Hill, 2005)

  3. P. Mohan Krishna, V. Sugunamma, N. Sandeep, Am-Euras. J. Sci. Res. 8, 135 (2013)

    Google Scholar 

  4. A. Postelnicu, Heat Mass Transfer 43, 595 (2007)

    Article  ADS  Google Scholar 

  5. H.C. Lin, M.I. Char, W.J. Chang, Numer. Heat Transfer A Appl. 55, 1096 (2009)

    Article  ADS  Google Scholar 

  6. M. Bhavana, D. Chenna Kesavaiah, A. Sudhakaraiah, Int. J. Innov. Res. Sci. Eng. Technol. 2, 1617 (2013)

    Google Scholar 

  7. K. Srihari, Chira Kesava Reddy, Int. J. Mech. Eng. 3, 1 (2014)

    Google Scholar 

  8. V.M. Soundalgekar, S.K. Gupta, N.S. Birajdar, Nucl. Eng. Des. 53, 339 (1979)

    Article  Google Scholar 

  9. A.G. Vijaya Kumar, Y. Rajasekhara Goud, S.V.K. Varma, Adv. Appl. Sci. Res. 3, 1494 (2012)

    Google Scholar 

  10. N. Ahmed, J. Heat Transfer T ASME 134, 062701 (2012)

    Article  Google Scholar 

  11. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 55, 7635 (2012)

    Article  Google Scholar 

  12. F. Soltani, U. Yilmazer, J. Appl. Polym. Sci. 70, 515 (1998)

    Article  Google Scholar 

  13. C. Derek, D.C. Tretheway, C.D. Meinhart, Phys. Fluids 14, L9 (2002)

    Article  Google Scholar 

  14. C.L.M.H. Navier, Mem. Acad. Sci. Inst. France 6, 389 (1823)

    Google Scholar 

  15. I.J. Rao, K.R. Rajagopal, Acta Mech. 135, 113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. A.R.A. Khaled, K. Vafai, Int. J. Nonlinear Mech. 39, 795 (2004)

    Article  ADS  MATH  Google Scholar 

  17. O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 319 (2006)

    Google Scholar 

  18. M.M. Hamza, B.Y. Isah, H. Usman, Int. J. Comput. Appl. 33, 12 (2011)

    Google Scholar 

  19. C. Fetecau, D. Vieru, Corina Fetecau, S. Akhter, Z. Naturforsch. 68a, 659 (2013)

    Article  Google Scholar 

  20. A. Sohail, Samiulhaq, D. Vieru, Eur. Phys. J. Plus 129, 28 (2014)

    Article  Google Scholar 

  21. M. Gnaneswara Reddy, Eur. Phys. J. Plus 129, 41 (2014)

    Article  Google Scholar 

  22. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edition (Taylor & Francis, New York, 2002)

  23. E. Magyari, A. Pantokratoras, Int. Commun. Heat Mass 38, 554 (2011)

    Article  Google Scholar 

  24. D. Vieru, Corina Fetecau, C. Fetecau, Niat Nigar, Z. Naturforsch. A 69a, 714 (2014)

    Article  Google Scholar 

  25. M. Narahari, K. Dutta Binay, Chem. Eng. Commun. 199, 628 (2012)

    Article  Google Scholar 

  26. J.H. He, Phys. Lett. A 350, 87 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. C.J. Toki, J.N. Tokis, Z. Angew. Math. Mech. 87, 4 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Hayat, M.F. Afzaal, C. Fetecau, A.A. Hendi, J. Porous Media 14, 481 (2011)

    Article  Google Scholar 

  29. M.E. Erdogan, Int. J. Nonlinear Mech. 35, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. N. Sandeep, V. Sugunamma, J. Appl. Fluid Mech. 7, 275 (2014)

    Google Scholar 

  31. A. Hussanan, Z. Ismail, I. Khan, A.G. Hussein, S. Shafie, Eur. Phys. J. Plus 129, 46 (2014)

    Article  Google Scholar 

  32. I.J. Uwanta, Murtala Sani, Int. J. Eng. Sci. 3, 77 (2014)

    Google Scholar 

  33. M. Turkyilmazoglu, Math. Comput. Model. 53, 1929 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Biazar, H. Aminikhah, Comput. Math. Appl. 58, 2221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Turkyilmazoglu, Int. J. Nonlinear Sci. Numer. 12, 9 (2012)

    MathSciNet  Google Scholar 

  36. M. Turkyilmazoglu, Advances in the Homotopy Analysis Method (World Scientific, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Fetecau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetecau, C., Vieru, D., Fetecau, C. et al. Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source. Eur. Phys. J. Plus 130, 6 (2015). https://doi.org/10.1140/epjp/i2015-15006-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15006-8

Keywords

Navigation