Skip to main content

Anisotropic charged stellar models in Generalized Tolman IV spacetime

Abstract

With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Schwarzschild, Sitzer. Preuss. Akad. Wiss. Berlin 424, 189 (1916) (republished in Gen. Relativ. Gravit. 35.

    Google Scholar 

  2. 2.

    R.C. Tolman, Phys. Rev. 55, 364 (1939).

    ADS  Google Scholar 

  3. 3.

    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).

    ADS  MATH  Google Scholar 

  4. 4.

    M. Wyman, Phys. Rev. 75, 1930 (1949).

    ADS  MATH  MathSciNet  Google Scholar 

  5. 5.

    M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998).

    ADS  MATH  MathSciNet  Google Scholar 

  6. 6.

    C. Leibovitz, Phys. Rev. D 185, 1664 (1969).

    ADS  MathSciNet  Google Scholar 

  7. 7.

    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, in Cambridge Monographs on Mathematical Physics, 2nd edition (Cambridge University Press, New York, 2003).

  8. 8.

    M.P. Korkina, Sov. Phys. J. 24, 468 (1981).

    Google Scholar 

  9. 9.

    M.C. Durgapal, J. Phys. A: Math. Gen. 15, 2637 (1982).

    ADS  MathSciNet  Google Scholar 

  10. 10.

    M. Ishak, L. Chamandy, N. Neary, K. Lake, Phys. Rev. D 64, 024005 (2001).

    ADS  Google Scholar 

  11. 11.

    K. Lake, Phys. Rev. D 67, 104015 (2003).

    ADS  MathSciNet  Google Scholar 

  12. 12.

    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001).

    ADS  Google Scholar 

  13. 13.

    J.M. Lattimer, J. Phys. G: Nucl. Part. Phys. 30, S479 (2004).

    ADS  Google Scholar 

  14. 14.

    J.M. Lattimer, M. Prakash, Phys. Rev. Lett. 94, 111101 (2005).

    ADS  Google Scholar 

  15. 15.

    S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010).

    ADS  Google Scholar 

  16. 16.

    R.J. Adler, J. Math. Phys. 15, 727 (1974).

    ADS  Google Scholar 

  17. 17.

    R.C. Adams, J.M. Cohen, Astrophys. J. 200, 507 (1975).

    ADS  Google Scholar 

  18. 18.

    B. Kuchowicz, Astrophys. Space Sci. 33, L13 (1975).

    ADS  MathSciNet  Google Scholar 

  19. 19.

    O.Y. Orlyansky, J. Math. Phys. 38, 5301 (1997).

    ADS  MATH  MathSciNet  Google Scholar 

  20. 20.

    P.G. Whitman, J. Math. Phys. 18, 868 (1976).

    ADS  Google Scholar 

  21. 21.

    H. Heintzmann, Z. Physik 228, 489 (1969).

    ADS  MathSciNet  Google Scholar 

  22. 22.

    P.G. Whitman, R.W. Redding, Astrophys. J. 224, 993 (1978).

    ADS  Google Scholar 

  23. 23.

    P.G. Whitman, J.F. Pizzo, Astrophys. J. 230, 893 (1979).

    ADS  Google Scholar 

  24. 24.

    H. Knutsen, Astrophys. Space Sci. 140, 385 (1988).

    ADS  MathSciNet  Google Scholar 

  25. 25.

    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 334, 145 (2011).

    ADS  MATH  Google Scholar 

  26. 26.

    R. Ruderman, A. Rev. Astr. Astrophys. 10, 427 (1972).

    ADS  Google Scholar 

  27. 27.

    V. Canuto, M. Chitre, Phys. Rev. Lett. 30, 999 (1973).

    ADS  Google Scholar 

  28. 28.

    V. Canuto, S.M. Chitre, Phys. Rev. D 9, 1587 (1974).

    ADS  Google Scholar 

  29. 29.

    V. Canuto, Annu. Rev. Astron. Astrophys. 12, 167 (1974).

    ADS  Google Scholar 

  30. 30.

    V. Canuto, Annu. Rev. Astron. Astrophys. 13, 335 (1975).

    ADS  Google Scholar 

  31. 31.

    V. Canuto, Ann. New York Acad. Sci. 302, 514 (1977).

    ADS  Google Scholar 

  32. 32.

    R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974).

    ADS  Google Scholar 

  33. 33.

    M. Cosenza, L. Herrera, M. Esculpi, L. Witten, J. Math. Phys. 22, 118 (1981).

    ADS  MATH  MathSciNet  Google Scholar 

  34. 34.

    S.S. Bayin, Phys. Rev. D 26, 1262 (1982).

    ADS  MathSciNet  Google Scholar 

  35. 35.

    K.D. Krori, P. Borgohaiann, R. Devi, Can. J. Phys. 62, 239 (1984).

    ADS  MATH  Google Scholar 

  36. 36.

    L. Herrera, J. Ponce de León, J. Math. Phys. 26, 2302 (1985).

    ADS  MATH  MathSciNet  Google Scholar 

  37. 37.

    J. Ponce de León, J. Math. Phys. 28, 1114 (1987).

    ADS  MATH  MathSciNet  Google Scholar 

  38. 38.

    J. Ponce de León, Gen. Relativ. Gravit. 19, 797 (1987).

    ADS  Google Scholar 

  39. 39.

    H. Bondi, Mon. Not. R. Astron. Soc. 259, 365 (1992).

    ADS  Google Scholar 

  40. 40.

    M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994).

    ADS  MathSciNet  Google Scholar 

  41. 41.

    L.K. Patel, N.P. Mehta, Aust. J. Phys. 48, 635 (1995).

    ADS  Google Scholar 

  42. 42.

    L. Herrera, N. Santos, Phys. Rep. 286, 53 (1997).

    ADS  MathSciNet  Google Scholar 

  43. 43.

    L. Herrera, A.D. Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys. 42, 2129 (2001).

    ADS  MATH  MathSciNet  Google Scholar 

  44. 44.

    B.V. Ivanov, Phys. Rev. D 65, 104011 (2002).

    ADS  Google Scholar 

  45. 45.

    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002).

    MATH  MathSciNet  Google Scholar 

  46. 46.

    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  47. 47.

    M. Gleiser, K. Dev, Int. J. Mod. Phys. D 13, 1389 (2004).

    ADS  MATH  Google Scholar 

  48. 48.

    T. Harko, M.K. Mak, J. Math. Phys. 41, 4752 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  49. 49.

    M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002).

    ADS  Google Scholar 

  50. 50.

    T. Harko, M.K. Mak, Ann. Phys. (Leipzig) 11, 3 (2002).

    ADS  MATH  Google Scholar 

  51. 51.

    M.K. Mak, T. Harko, Proc. R. Soc. London A 459, 393 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  52. 52.

    H. Hernández, L.A. Núñez, Can. J. Phys. 82, 29 (2004).

    ADS  Google Scholar 

  53. 53.

    M. Chaisi, S.D. Maharaj, Pramana J. Phys. 66, 313 (2006).

    ADS  Google Scholar 

  54. 54.

    M. Chaisi, S.D. Maharaj, Pramana J. Phys. 66, 609 (2006).

    ADS  Google Scholar 

  55. 55.

    S. Karmakar, S. Mukherjee, R. Sharma, S.D. Maharaj, Pramana J. Phys. 68, 881 (2007).

    ADS  Google Scholar 

  56. 56.

    R. Sharma, S.D. Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007).

    ADS  Google Scholar 

  57. 57.

    M. Esculpi, M. Malaver, E. Alomá, Gen. Relativ. Gravit. 39, 633 (2007).

    ADS  MATH  Google Scholar 

  58. 58.

    S.D. Maharaj, R. Maartens, Gen. Relativ. Gravit. 21, 899 (1989).

    ADS  MathSciNet  Google Scholar 

  59. 59.

    S. Thirukkanesh, S.D. Maharaj, Class. Quantum Grav. 25, 235001 (2008).

    ADS  MathSciNet  Google Scholar 

  60. 60.

    V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys. Rev. D 82, 044052 (2010).

    ADS  Google Scholar 

  61. 61.

    T. Feroze, A.A. Siddiqui, Gen. Relativ. Gravit. 43, 1025 (2011).

    ADS  MATH  MathSciNet  Google Scholar 

  62. 62.

    S. Viaggiu, Int. J. Mod. Phys. D 18, 275 (2009).

    ADS  MATH  Google Scholar 

  63. 63.

    V.V. Usov, Phys. Rev. D 70, 067301 (2004).

    ADS  Google Scholar 

  64. 64.

    V.V. Usov, T. Harko, K.S. Cheng, Astrophys. J. 620, 915 (2005).

    ADS  Google Scholar 

  65. 65.

    R.P. Negreiros, I.M. Mishustin, S. Schramm, F. Weber, Phys. Rev. D 82, 103010 (2010).

    ADS  Google Scholar 

  66. 66.

    S. Ray, A.L. Espíndola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 68, 084004 (2003).

    ADS  Google Scholar 

  67. 67.

    M. Malheiro, R. Picanço, S. Ray, J.P.S. Lemos, V.T. Zanchin, Int. J. Mod. Phys. D 13, 1375 (2004).

    ADS  MATH  Google Scholar 

  68. 68.

    F. Weber, M. Meixner, R.P. Negreiros, M. Malheiro, Int. J. Mod. Phys. E 16, 1165 (2007).

    ADS  Google Scholar 

  69. 69.

    F. Weber, R. Negreiros, P. Rosenfield, Neutron Stars and Pulsars, in Astrophysics and Space Science Library, Vol. 357 (Springer, Berlin, 2009) DOI:10.1007/978-3-540-76965-1_0.

  70. 70.

    F. Weber, O. Hamil, K. Mimura, R.P. Negreiros, Int. J. Mod. Phys. D 19, 1427 (2010).

    ADS  MATH  Google Scholar 

  71. 71.

    R.P. Negreiros, F. Weber, M. Malheiro, V. Usov, Phys. Rev. D 80, 083006 (2009).

    ADS  Google Scholar 

  72. 72.

    J. van Leeuwen (Editor), Structure of quark stars, in Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years, Proceedings IAU Symposium, IAU, 2012, number 291 (DOI:10.1017/S1743921312023174).

  73. 73.

    R.P. Negreiros, M. Malheiro, Int. J. Mod. Phys. D 16, 303 (2007).

    ADS  MATH  Google Scholar 

  74. 74.

    A. Nduka, Gen. Relativ. Gravit. 7, 493 (1976).

    ADS  Google Scholar 

  75. 75.

    A. Nduka, Acta Phys. Pol. B 9, 569 (1978).

    Google Scholar 

  76. 76.

    T. Singh, R.B.S. Yadav, Acta Phys. Pol. B 9, 831 (1978).

    ADS  MathSciNet  Google Scholar 

  77. 77.

    P.G. Whitman, R.C. Burch, Phys. Rev. D 24, 2049 (1982).

    ADS  Google Scholar 

  78. 78.

    S.S. Koppar, L.K. Patel, T. Singh, Acta Phys. Hung. 69, 53 (1991).

    MathSciNet  Google Scholar 

  79. 79.

    M.K. Mak, P.C.W. Fung, Nuovo Cimento B 110, 897 (1995).

    ADS  MathSciNet  Google Scholar 

  80. 80.

    M.K. Mak, P.C.W. Fung, T. Harko, Nuovo Cimento B 111, 1461 (1996).

    ADS  MathSciNet  Google Scholar 

  81. 81.

    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 334, 301 (2011).

    ADS  MATH  Google Scholar 

  82. 82.

    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 353, 657 (2014).

    ADS  Google Scholar 

  83. 83.

    M.K. Mak, P.N. Dobson, T. Harko, Int. J. Mod. Phys. D 11, 207 (2002).

    ADS  Google Scholar 

  84. 84.

    M.K. Mak, T. Harko, Int. J. Mod. Phys. D 13, 149 (2004).

    ADS  MATH  Google Scholar 

  85. 85.

    M. Esculpi, E. Alomá, Eur. Phys. J. C 67, 521 (2010).

    ADS  Google Scholar 

  86. 86.

    K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2011).

    ADS  MathSciNet  Google Scholar 

  87. 87.

    P.M. Takisa, S.D. Maharaj, Gen. Relativ. Gravit. 45, 1951 (2013).

    ADS  MATH  MathSciNet  Google Scholar 

  88. 88.

    P.M. Takisa, S.D. Maharaj, Astrophys. Space Sci. 343, 569 (2013).

    ADS  MATH  Google Scholar 

  89. 89.

    S.K. Maurya, Y.K. Gupta, Phys. Scr. 86, 025009 (2012).

    ADS  Google Scholar 

  90. 90.

    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344, 243 (2013).

    ADS  MATH  Google Scholar 

  91. 91.

    S.D. Maharaj, P.M. Takisa, Gen. Relativ. Gravit. 44, 1419 (2012).

    ADS  MATH  Google Scholar 

  92. 92.

    F. Rahaman, R. Sharma, S. Ray, R. Maulick, I. Karar, Eur. Phys. J. C 72, 2071 (2012).

    ADS  Google Scholar 

  93. 93.

    M. Kalam, A.A. Usmani, F. Rahaman, S.M. Hossein, I. Karar, R. Sharma, Int. J. Theor. Phys. 52, 3319 (2013).

    MATH  MathSciNet  Google Scholar 

  94. 94.

    S. Thirukkanesh, F.C. Ragel, Pramana J. Phys. 81, 275 (2013).

    ADS  Google Scholar 

  95. 95.

    R. Sharma, S. Karmakar, S. Mukherjee, Int. J. Mod. Phys. D 15, 405 (2006).

    ADS  MATH  Google Scholar 

  96. 96.

    R. Deb, B.C. Paul, R. Tikekar, Pramana J. Phys. 79, 211 (2012).

    ADS  Google Scholar 

  97. 97.

    R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22, 1350074 (2013).

    ADS  Google Scholar 

  98. 98.

    S.D. Maharaj, J.M. Sunzu, S. Ray, Eur. Phys. J. Plus 129, 3 (2014).

    Google Scholar 

  99. 99.

    J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 352, 719 (2014).

    ADS  Google Scholar 

  100. 100.

    J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 2131 (2014).

    Google Scholar 

  101. 101.

    L. Herrera, J. Ospino, A.D. Prisco, Phys. Rev. D 77, 027502 (2008).

    ADS  MathSciNet  Google Scholar 

  102. 102.

    M.H. Murad, S. Fatema, Some new Wyman-Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling (2014) arXiv:1408.5126v2.

  103. 103.

    P. Anninos, T. Rothman, Phys. Rev. D 65, 024003 (2001).

    ADS  Google Scholar 

  104. 104.

    A. Giuliani, T. Rothman, Gen. Relativ. Gravit. 40, 1427 (2008).

    ADS  MATH  MathSciNet  Google Scholar 

  105. 105.

    M.H. Murad, S. Fatema, Int. J. Theor. Phys. 52, 4342 (2013).

    MATH  MathSciNet  Google Scholar 

  106. 106.

    R.L. Bowers, W.D. Arnett, Astrophys. J. Suppl. 33, 415 (1977).

    ADS  Google Scholar 

  107. 107.

    C.G. Böhmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006).

    ADS  MATH  Google Scholar 

  108. 108.

    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959).

    ADS  MATH  MathSciNet  Google Scholar 

  109. 109.

    C.G. Böhmer, T. Harko, Gen. Relativ. Gravit. 39, 757 (2007).

    ADS  MATH  Google Scholar 

  110. 110.

    H. Andréasson, Commun. Math. Phys. 288, 715 (2009).

    ADS  MATH  Google Scholar 

  111. 111.

    M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B 438, 123 (1998).

    ADS  Google Scholar 

  112. 112.

    X.-D. Li, I. Bombaci, Mira Dey, Jishnu Dey, E.P.J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999).

    ADS  Google Scholar 

  113. 113.

    F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).

    ADS  Google Scholar 

  114. 114.

    T. Gangopadhyay, S. Ray, X.D. Li, J. Dey, M. Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Murad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murad, M.H., Fatema, S. Anisotropic charged stellar models in Generalized Tolman IV spacetime. Eur. Phys. J. Plus 130, 3 (2015). https://doi.org/10.1140/epjp/i2015-15003-y

Download citation

Keywords

  • Neutron Star
  • Pressure Anisotropy
  • Tangential Pressure
  • Electric Charge Distribution
  • Strange Quark Star