Skip to main content
Log in

Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, both the linear and nonlinear intersubband optical absorption coefficients and the refractive index changes are calculated for the uniform, triangular and Gaussian-like donor distribution. The Gaussian-like distribution differs from the Gaussian distribution other authors use. The electronic structure of n-type Si δ-doped GaAs has been theoretically calculated by solving the Schrödinger and Poisson equations self-consistently. Our results show that the location and the size of the linear and total absorption coefficients and refractive index changes depend on the donor distribution type. The shape of δ-effective potential profile and the subband properties are changed as dependent on the donor distribution model. Therefore, the variation of the absorption coefficients and refraction index changes, which can be appropriate for various optical modulators and infrared optical device applications can be smooth obtained by the alteration donor distribution model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Degani, Phys. Rev. B 44, 5580 (1991).

    Article  ADS  Google Scholar 

  2. S.M. Li, W.M. Zheng, A.L. Wu, W.Y. Cong, J. Liu, N.N. Chu, Y.X. Song, Appl. Phys. Lett. 97, 023507 (2010).

    Article  ADS  Google Scholar 

  3. E. Ozturk, Superlattices Microstruct. 46, 752 (2009).

    Article  ADS  Google Scholar 

  4. E. Ozturk, I. Sokmen, J. Phys. D 36, 2457 (2003).

    Article  ADS  Google Scholar 

  5. I. Rodriguez-Vargas, L.M. Gaggero-Sager, V.R. Velasco, Surf. Sci. 537, 75 (2003).

    Article  ADS  Google Scholar 

  6. E.F. Schubert, J. Vac. Sci. Technol. A 8, 2980 (1990).

    Article  ADS  Google Scholar 

  7. P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, K.H. Ploog, Phys. Rev. Lett. 96, 187402 (2006).

    Article  ADS  Google Scholar 

  8. J.C. Egues, J.C. Barbosa, A.C. Notari, P. Basmaji, L. Ioriatti, J. Appl. Phys. 70, 3678 (1991).

    Article  ADS  Google Scholar 

  9. E. Ozturk, Y. Ergun, H. Sari, I. Sokmen, J. Appl. Phys. 91, 2118 (2002).

    Article  ADS  Google Scholar 

  10. O. Oubram, I. Rodriguez-Vargas, J.C. Martinez-Orozco, Rev. Mexicana Fis. 60, 161 (2014).

    MathSciNet  Google Scholar 

  11. Y.M. Lin, S.L. Wu, S.J. Chang, S. Koh, Y. Shiraki, IEEE Electr. Device L 24, 69 (2003).

    Article  ADS  Google Scholar 

  12. E. Ozturk, Y. Ozdemir, Opt. Commun. 294, 361 (2013).

    Article  ADS  Google Scholar 

  13. E. Ozturk, Y. Ergun, H. Sari, I. Sokmen, Eur. Phys. J. Appl. Phys. 21, 97 (2003).

    Article  ADS  Google Scholar 

  14. Ph. Ebert, S. Landrock, Y.P. Chiu, U. Breuer, R.E. Dunin-Borkowski, Appl. Phys. Lett. 101, 192103 (2012).

    Article  ADS  Google Scholar 

  15. E. Ozturk, M.K. Bahar, I. Sokmen, Eur. Phys. J. Appl. Phys. 41, 195 (2008).

    Article  ADS  Google Scholar 

  16. M.L. Ke, J.S. Rimmer, B. Hamilton, J.H. Evans, M. Missous, K.E. Singer, P. Zalm, Phys. Rev. B 45, 14114 (1992).

    Article  ADS  Google Scholar 

  17. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).

    Article  ADS  Google Scholar 

  18. F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 48, 478 (1986).

    Article  ADS  Google Scholar 

  19. R.J. Turton, M. Jaros, Appl. Phys. Lett. 47, 1986 (1989).

    Article  ADS  Google Scholar 

  20. K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, R.J. Malik, Appl. Phys. Lett. 50, 1814 (1987).

    Article  ADS  Google Scholar 

  21. K.W. Gossen, S.A. Lyon, Appl. Phys. Lett. 47, 289 (1985).

    Article  Google Scholar 

  22. D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987).

    Article  ADS  Google Scholar 

  23. R.P.G. Karunasiri, Y.J. Mii, K.L. Wang, IEEE Electron Dev. Lett. 11, 227 (1990).

    Article  ADS  Google Scholar 

  24. S. Noda, T. Uemura, T. Yamashita, A. Sasaki, J. Appl. Phys. 68, 6529 (1990).

    Article  ADS  Google Scholar 

  25. L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011).

    Article  ADS  Google Scholar 

  26. H. Yildirim, M. Tomak, Phys. Stat. Solidi B 243, 2874 (2006).

    Article  ADS  Google Scholar 

  27. E. Ozturk, I. Sokmen, J. Lumin. 134, 42 (2013).

    Article  Google Scholar 

  28. C. Lien, Y. Huang, J. Wang, J. Appl. Phys. 76, 1008 (1994).

    Article  ADS  Google Scholar 

  29. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Stat. Sol. 4, 292 (2007).

    Article  Google Scholar 

  30. R. Wei, W. Xie, Curr. Appl. Phys. 10, 757 (2010).

    Article  ADS  Google Scholar 

  31. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007).

    Article  ADS  Google Scholar 

  32. E. Ozturk, I. Sokmen, Opt. Commun. 285, 5223 (2012).

    Article  ADS  Google Scholar 

  33. K.A. Rodriguez-Magdaleno, J.C. Martinez-Orozco, I. Rodriguez-Vargas, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 147, 77 (2014).

    Article  Google Scholar 

  34. J.C. Martinez-Orozco, M.E. Mora-Ramos, C.A. Duque, Phys. Stat. Solidi B 249, 146 (2012).

    Article  ADS  Google Scholar 

  35. G. Liu, K. Guo, Q. Wu, Superlattices Microstruct. 52, 183 (2012).

    Article  ADS  Google Scholar 

  36. M.J. Karimi, A. Keshavarz, A. Poostforush, Superlattices Microstruct. 49, 441 (2011).

    Article  ADS  Google Scholar 

  37. O. Oubram, O. Navarro, L.M. Gaggero-Sager, J.C. Martínez-Orozcoc, I. Rodríguez-Vargas, Solid State Sci. 14, 440 (2012).

    Article  ADS  Google Scholar 

  38. A. Ben Jazia, H. Mejri, H. Maaref, K. Souissi, Semicond. Sci. Tech. 12, 1388 (1997).

    Article  ADS  Google Scholar 

  39. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-23, 2196 (1987).

    ADS  Google Scholar 

  40. K.J. Kuhn, G.U. Lyengar, S. Yee, J. Appl. Phys. 70, 5010 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, E. Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions. Eur. Phys. J. Plus 130, 1 (2015). https://doi.org/10.1140/epjp/i2015-15001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15001-1

Keywords

Navigation