Skip to main content
Log in

Structural and magnetocaloric properties of nano Zn ferrite doped with Ni under hydrothermal conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript


A series of Zn1−x Ni x Fe2O4 nano ferrite (with x = 0 , 0.2, 0.4, 0.6, 0.8, 1) compositions were synthesized using the hydrothermal technique. The powder samples were characterized by XRD, VSM, and FTIR. The X-ray analysis showed that the samples had a single phase spinel cubic structure. The lattice constant decreased with increasing Ni content from 8.373 to 8.279 Å. The FTIR spectra of the samples in the range 200–5000 cm−1 were reported. The hysteresis loops of the samples were performed at room temperature, the coercivity (H c), saturation magnetization (M s), experimental magnetic moment (μ exp) and retentivity (M r) were determined. The magnetic entropy change was calculated from measurements of M(H,T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (ΔS) increased as the applied field increased, which makes these material candidates for magnetocaloric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. K.R. Krishna, D. Ravinder, K. Vijaya Kumar, U.S. Joshi, V.A. Rana, A. Lincon, World J. Condens. Matter Phys. 2, 4 (2012).

    Google Scholar 

  2. K.R. Krishna, K.V. Kumar, C. Ravindernathgupta, D. Ravinder, Adv. Mater. Phys. Chem. 2, 149 (2012).

    Article  Google Scholar 

  3. K.H. Maria, S. Choudhury, M.A. Hakim, Int. Nano Lett. 3, 42 (2013).

    Article  Google Scholar 

  4. K.R. Krishna, K.V. Kumar, D. Ravinder, Adv. Mater. Phys. Chem. 2, 185 (2012).

    Article  Google Scholar 

  5. K.R. Krishna, D. Ravinder, K.V. Kumar, Ch.A. Lincon, World J. Condens. Matter Phys. 2, 153 (2012).

    Article  ADS  Google Scholar 

  6. K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Mater. Res. 13, 299 (2010).

    Article  Google Scholar 

  7. C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, in Journal of Applied Crystallography, Vol. 32 (Copenhagen, 1999) pp. 838.

  8. A. Soare, Cristina Mandravel, Analele UniversităŃii din Bucureşti - Chimie, Anul XVII (serie nouă), Vol. II (2008) pp. 33--40.

  9. I. Yeong, K. Kim, C. Lee, Phys. B Phys. Condens. Matter 337, 42 (2003).

    Article  ADS  Google Scholar 

  10. M. Anantharaman, S. Jagatheesan, K. Malini, S. Sindhu, A. Narayanasamy, C. Chinnasamy, J. Jacobs, S. Reijne, K. Seshan, R. Smits, H. Brongersma et al., J. Magn. Magn. Mater. 189, 83 (1998).

    Article  ADS  Google Scholar 

  11. Y.-P. Fu, S.-H. Hu, Ceram. Int. 36, 1311 (2010).

    Article  Google Scholar 

  12. R.G. Kharake, R.S. Devan, B.K. Chougalu, J. Alloys Compd. 463, 67 (2008).

    Article  Google Scholar 

  13. B.R. Karache, B.V. Khasbardar, A.S. Vanigam, J. Magn. Magn. Mater. 168, 292 (1997).

    Article  ADS  Google Scholar 

  14. A. Kale, S. Gubbala, R. Misra, J. Magn. Magn. Mater. 277, 350 (2004).

    Article  ADS  Google Scholar 

  15. N. Chau, N.K. Thuan, D.L. Minh, N.H. Luong, VNU J. Science, Math. Phys. 24, 155 (2008).

    Google Scholar 

  16. S. Mazen, M. Abdallah, R. Nakhla, H. Zaki, F. Metawe, Mater. Chem. Phys. 34, 35 (1993).

    Article  Google Scholar 

  17. A. Globus, H. Pascard, V. Cagan, J. Phys. Colloq. C1 38, 163 (1977).

    Google Scholar 

  18. M. Hakim, S. Nath, S. Sikder, K. Maria, J. Phys. Chem. Solids 74, 1316 (2013).

    Article  ADS  Google Scholar 

  19. M. Jalaly, M.H. Enayati, F. Karimzadeh, P. Kameli, Powder Technol. 193, 150 (2009).

    Article  Google Scholar 

  20. S.J. Moeen, M.R. Vaezi, A.A. Yousefi, Prog. Color Color. Coat. 3, 9 (2010).

    Google Scholar 

  21. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, J. Super. Novel Magn. 25, 2443 (2012).

    Article  Google Scholar 

  22. K.J. Standly, Oxides Magnetic Materials (Clarendon Press, Oxford, 1972).

  23. D.M. Hemeda, A. Tawfik, O.M. Hemeda, S.M. Dewidar, Solid State Sci. 11, 1350 (2009).

    Article  ADS  Google Scholar 

  24. Coey, JMD: Rare Earth Permanent Magnetism, 1st edition (Wiley, New York, 1996).

  25. E. Calderón-Ortiz, O. Perales-Perez, P. Voyles, G. Gutierrez, M.S. Tomar, ENS'07 Paris, France (2007) 3-4 December.

  26. L. Neel, Ann. Phys. 12, 137 (1948).

    Google Scholar 

  27. E.V. Gopalan, I.A. Al-Omari, K.A. Malini, P.A. Joy, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Magn. Magn. Mater. 321, 1092 (2009).

    Article  ADS  Google Scholar 

  28. P. Poddar, J. Gass, D.J. Rebar, S. Srinath, H. Srikanth, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater. 307, 227 (2006).

    Article  ADS  Google Scholar 

  29. J.H. Cho, S.G. Ko, Y. Ahn, J. Korean Phys. Soc. 53, 746 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. M. Hemeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A., Hemeda, O.M., Hemeda, D.M. et al. Structural and magnetocaloric properties of nano Zn ferrite doped with Ni under hydrothermal conditions. Eur. Phys. J. Plus 129, 278 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: