Skip to main content

Advertisement

Log in

Reconstructions of scalar field dark energy models from new holographic dark energy in Galileon universe

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Here we briefly discuss the Galileon gravity theory and modified Friedmann equations. By considering new holographic dark energy (NHDE) in the framework of Galileon gravity, we found the energy density, pressure, equation of state and the deceleration parameter in terms of the scale factor. Subsequently, we study the correspondence between the NHDE in the framework of Galileon gravity with other dark energies like quintessence, k-essence, tachyon, dilaton, hessence and DBI-essence dark energies and construct the scalar field and corresponding scalar potentials which describe the dynamics of the scalar fields graphically. All the dark energy models, the scalar field and the potential decrease due to the evolution of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. S. Briddle et al., Science 299, 1532 (2003)

    Article  ADS  Google Scholar 

  4. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  5. V. Sahni, A. Starobinsky, Int. J. Mod. Phy. D 9, 373 (2000)

    ADS  Google Scholar 

  6. A.G. Riess et al., Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  7. B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  8. U. Alam, V. Sahni, A.A. Starobinsky, JCAP 06, 008 (2004)

    Article  ADS  Google Scholar 

  9. P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  10. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  11. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  12. M. Gasperini et al., Phys. Rev. D 65, 023508 (2002)

    Article  ADS  Google Scholar 

  13. B. Gumjudpai, J. Ward, Phys. Rev. D 80, 023528 (2009)

    Article  ADS  Google Scholar 

  14. J. Martin, M. Yamaguchi, Phys. Rev. D 77, 123508 (2008)

    Article  ADS  Google Scholar 

  15. H. Wei, R.G. Cai, D.F. Zeng, Class. Quantum Grav. 22, 3189 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A. Sen, JHEP 07, 065 (2002)

    Article  ADS  Google Scholar 

  17. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  18. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. P. Horava, D. Minic, Phys. Rev. Lett. 85, 1610 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.D. Thomas, Phys. Rev. Lett. 89, 081301 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  22. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. M. Li, Xiao-Dong Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  24. S. Tsujikawa, Lect. Notes Phys. 800, 99 (2010)

    Article  ADS  Google Scholar 

  25. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 484, 112 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. De Felice, T. Tsujikawa, arXiv:1002.4928 [gr-qc]

  27. M.C.B. Abdalla, S. Nojiri, S.D. Odintsov, Class. Quantum Grav. 22, L35 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  29. K.K. Yerzhanov, arXiv:1006.3879v1 [gr-qc]

  30. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. I. Antoniadis, J. Rizos, K. Tamvakis, Nucl. Phys. B 415, 497 (1994)

    Article  ADS  Google Scholar 

  32. P. Horava, JHEP 03, 020 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Brans, H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D 79, 084003 (2009)

    Article  ADS  Google Scholar 

  36. C. Deffayet, S. Deser, G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009)

    Article  ADS  Google Scholar 

  37. N. Chow, J. Khoury, Phys. Rev. D 80, 024037 (2009)

    Article  ADS  Google Scholar 

  38. E.P. Silva, K. Koyama, Phys. Rev. D 80, 121301 (2009)

    Article  ADS  Google Scholar 

  39. T. Kobayashi, H. Tashiro, D. Suzuki, Phys. Rev. D 81, 063513 (2010)

    Article  ADS  Google Scholar 

  40. M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 73, 2347 (2013)

    Article  ADS  Google Scholar 

  41. C. Ranjit, P. Rudra, U. Debnath, arXiv:1406.3043v1

  42. D. Momeni, R. Myrzakulov, arXiv:1410.1520 [gr-qc]

  43. M. Jamil, I. Hussain, D. Momeni, Eur. Phys. J. Plus 126, 80 (2011)

    Article  Google Scholar 

  44. M. Jamil, D. Momeni, Chin. Phys. Lett. 28, 099801 (2011)

    Article  ADS  Google Scholar 

  45. K. Bamba, D. Momeni, R. Myrzakulov, arXiv:1404.4255 [hep-th]

  46. J. Dutta, U. Debnath, Int. J. Theor. Phys. 51, 639 (2012)

    Article  MATH  Google Scholar 

  47. M. Jamil, A. Sheykhi, Int. J. Theor. Phys. 50, 625 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. S. Chattopadhyay, U. Debnath, Int. J. Theor. Phys. 50, 315 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. M.R. Setare, Int. J. Mod. Phys. D 12, 2219 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  50. U. Debnath, M. Jamil, Astrophys. Space Sci. 335, 545 (2011)

    Article  ADS  Google Scholar 

  51. K. Karami, J. Fehri, Phys. Lett. B 684, 61 (2010)

    Article  ADS  Google Scholar 

  52. M. Khurshudyan, N.S. Mazhari, D. Momeni, R. Myrzakulov, M. Raza, arXiv:1403.0081 [gr-qc]

  53. L.N. Granda, A. Oliveros, Phys. Lett. B 669, 275 (2008)

    Article  ADS  Google Scholar 

  54. S. Chattopadhyay, A. Pasqua, M. Khurshudyan, arXiv:1401.8208

  55. M. Sharif, S. Waheed, Astrophys. Space Sci. 348, 261 (2013)

    Article  ADS  Google Scholar 

  56. W. Yang, Y.Wu, Li-Min Song, Y. Su, J. Li, D. Zhang, X. Wang, Mod. Phys. Lett. A 26, 191 (2011)

    Article  ADS  MATH  Google Scholar 

  57. A. Sen, Mod. Phys. Lett. A 17, 1797 (2002)

    Article  ADS  MATH  Google Scholar 

  58. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, U. Reconstructions of scalar field dark energy models from new holographic dark energy in Galileon universe. Eur. Phys. J. Plus 129, 272 (2014). https://doi.org/10.1140/epjp/i2014-14272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14272-2

Keywords

Navigation