Skip to main content
Log in

Thermal analysis of a reactive generalized Couette flow of power law fluids between concentric cylindrical pipes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton’s law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Rate constant

B :

Planck’s number

Bi :

Biot number

Br :

Brinkmann number

C 0 :

Concentration of the reactant

E :

Activation energy

k :

Thermal conductivity

h :

Heat transfer coefficient

l :

Boltzmann’s constant

P :

Pressure

Q :

Heat of reaction

R :

Universal gas constant

r :

Radial distance

r 0 :

Inner pipe radius

r 1 :

Outer pipe radius

m :

Reaction exponent

n :

Power law index

Nu :

Nusselt number

T 0 :

Inner pipe temperature

T :

Absolute temperature

T a :

Ambient temperature

u :

Velocity component

U :

Inner pipe axial velocity

w :

Dimensionless velocity

z :

Axial distance

λ :

Frank-Kamenetskii

λ c :

Critical parameter

ε :

Activation energy parameter

γ :

Flow consistency index

ν :

Vibration frequency

δ :

Annulus parameter

Ψ :

Pressure gradient parameter

θ :

Dimensionless temperature

α :

Inner pipe temperature parameter

References

  1. G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics (McGraw-Hill, 1974).

  2. D. Grecov, J.R. Clermont, J. Non-Newtonian Fluid Mech. 126, 175 (2005).

    Article  MATH  Google Scholar 

  3. C.W. Macosko, Rheology: principles, measurements and applications (Wiley-VCH, New York, 1994).

  4. R.B. Bird, R.A. Armstrong, O. Hassager, Dynamics of polymeric liquids (Wiley, New York, 1987).

  5. W. Wei, K. Liu, M. Jiao, Tribol. Int. 40, 1065 (2007).

    Google Scholar 

  6. D.A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, second edition (Plenum Press, New York, 1969).

  7. J. Adler, Combustion Flame 24, 151 (1975).

    Article  Google Scholar 

  8. T. Haroon, A.R. Ansari, A.M. Siddiqui, S.U. Jan, Appl. Math. Sci. 5, 2721 (2011).

    MATH  MathSciNet  Google Scholar 

  9. S.S. Okoya, Mech. Res. Commun. 33, 728 (2006).

    Article  MATH  Google Scholar 

  10. O.D. Makinde, Appl. Math. Comput. 189, 690 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  11. O.D. Makinde, J. Energ. Mater. 30, 283 (2012).

    Article  Google Scholar 

  12. O.D. Makinde, O. Franks, Cent. Eur. J. Eng. 4, 54 (2014).

    Article  Google Scholar 

  13. M. Couette, Ann. Chim. Phys. 21, 433 (1890).

    MATH  Google Scholar 

  14. A.F. Khadrawi, A. Al-Shyyab, Int. Commun. Heat Mass Transfer 37, 1149 (2010).

    Article  Google Scholar 

  15. R. Malik, U.V. Shenoy, Ind. Eng. Chem. Res. 30, 1950 (1991).

    Article  Google Scholar 

  16. P. Filip, J. David, J. Pet. Sci. Eng. 40, 111 (2003).

    Article  Google Scholar 

  17. L. Yang, G.A. Chukwu, Can. J. Chem. Eng. 73, 241 (1995).

    Article  Google Scholar 

  18. J. Sheau-Ming, W. Cheng-I, Wear 171, 41 (1994).

    Article  Google Scholar 

  19. T.Y. Na, Computational methods in engineering boundary value problems (Academic Press, New York, 1979).

  20. T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer (Springer, New York, 1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Makinde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makinde, O.D. Thermal analysis of a reactive generalized Couette flow of power law fluids between concentric cylindrical pipes. Eur. Phys. J. Plus 129, 270 (2014). https://doi.org/10.1140/epjp/i2014-14270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14270-4

Keywords

Navigation