Skip to main content
Log in

Quantization of almost-circular orbits in the Fokker action formalism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The time-non-local action principle of Fokker type determining a two-particle dynamics is considered. The system is assumed to be general but invariant with respect to the Aristotle group, which is a common subgroup of the Galileo and Poincaré groups. It is shown that integral-differential equations of motion of such system admit circular orbit solutions. The dynamics of perturbations of these solutions is derived and studied. On this ground, the Hamiltonian description of the time-non-local two-particle system is built in the almost circular orbit approximation. The Aristotle invariance of the system is exploited to select physical degrees of freedom. The quantization procedure and a construction of energy spectrum of the system is proposed. The application in meson spectroscopy is meant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Havas, Galilei- and Lorentz-invariant particle systems and their conservation laws, in Problems in the Foundations of Physics (Springer, Berlin, 1971) pp. 31--48.

  2. E.H. Kerner (Editors), The Theory of Action-at-a-Distance in Relativistic Particle Mechanics, Collection of reprints (Gordon and Breach, New York, 1972).

  3. K. Schwarzschild, Nachr. Ges. Wiss. Göttingen 128, 132 (1903).

    Google Scholar 

  4. H. Tetrode, Z. Phys. 10, 317 (1922).

    Article  ADS  Google Scholar 

  5. A.D. Fokker, Z. Phys. 28, 386 (1929).

    Article  ADS  Google Scholar 

  6. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945).

    Article  ADS  Google Scholar 

  7. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 21, 425 (1949).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. P. Ramond, Phys. Rev. D 7, 449 (1973).

    Article  ADS  Google Scholar 

  9. V.I. Tretyak, Forms of relativistic Lagrangian dynamics (Naukova Dumka, Kyïv, 2011) (Ukrainian).

  10. Yu.S. Vladimirov, A.Yu. Turygin, Theory of direct interparticle interaction (Energoatomizdat, Moscow, 1986) (Russian).

  11. F. Hoyle, J.V. Narilikar, Action at a distance in physics and cosmology (Freemen, New York, 1974).

  12. F. Hoyle, J.V. Narilikar, Rev. Mod. Phys. 67, 113 (1995).

    Article  ADS  Google Scholar 

  13. A. Rivacoba, Nuovo Cimento B 84, 35 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Weiss, J. Math. Phys. 27, 1015 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Duviryak, Int. J. Mod. Phys. A 14, 4519 (1999).

    Article  ADS  Google Scholar 

  16. A. Duviryak, Int. J. Mod. Phys. A 16, 2771 (2001).

    Article  ADS  MATH  Google Scholar 

  17. D.J. Louis-Martines, Found. Phys. 42, 215 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. D.J. Louis-Martines, Phys. Lett. B 632, 733 (2006).

    Article  ADS  Google Scholar 

  19. H.W. Woodcock, P. Havas, Phys. Rev. D 6, 3422 (1972).

    Article  ADS  Google Scholar 

  20. R.P. Gaida, V.I. Tretyak, Acta Phys. Pol. B 11, 502 (1980).

    Google Scholar 

  21. R.P. Gaida, Yu.B. Kluchkovsky, V.I. Tretyak, Three-dimensional Lagrangian approach to the classical relativistic dynamics of directly interacting particles, in Constraint's Theory and Relativistic Dynamics, edited by G. Longhi, L. Lusanna (World Scientific Publ., Singapore, 1987) pp. 210--241.

  22. X. Jaén, R. Jáuregui, J. Llosa, A. Molina, Phys. Rev. D 36, 2385 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Llosa, J. Vives, J. Math. Phys. 35, 2856 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. X. Jaén, R. Jáuregui, J. Llosa, A. Molina, J. Math. Phys. 30, 2807 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. A. Schild, Phys. Rev. 131, 2762 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. C.M. Andersen, H.C. von Baeyer, Ann. Phys. (N.Y.) 60, 67 (1970).

    Article  ADS  MATH  Google Scholar 

  27. A. Degasperis, Phys. Rev. D 3, 273 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  28. C.M. Andersen, H.C. von Baeyer, Phys. Rev. D 5, 802 (1972).

    Article  ADS  Google Scholar 

  29. S.V. Klimenko, I.N. Nikitin, W.F. Urazmetov, Nuovo Cimento A 111, 1281 (1998).

    Article  ADS  Google Scholar 

  30. I.N. Nikitin, J. De Luca, Int. J. Mod. Phys. C 12, 739 (2001).

    Article  ADS  Google Scholar 

  31. J. De Luca, J. Math. Phys. 50, 062701 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Bauer, D.-A. Deckert, D. Dürr, Z. Angew. Math. Phys. 64, 1087 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  33. H.C. von Baeyer, Phys. Rev. D 12, 3086 (1975).

    Article  ADS  Google Scholar 

  34. W.H. Miller, J. Chem. Phys. 63, 996 (1975).

    Article  ADS  Google Scholar 

  35. J.-M. Souriau, Structure des systémes dynamiques (Dunod, Paris, 1970) p. 175.

  36. B. Chaverondier, arXiv:0805.2417.

  37. W.N. Herman, J. Math. Phys. 26, 2769 (1985).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. Pais, G.E. Uhlenbeck, Phys. Rev. 79, 145 (1950).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. A. Staruszkiewicz, Ann. Phys. 23, 66 (1969).

    Article  Google Scholar 

  40. B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. A.A. Duviryak, A class of canonical realizations of the Poincaré group, in Methods for studying differential and integral operators (Naukova Dumka, Kyïv, 1989) pp. 59--66 (Russian).

  42. S.N. Sokolov, A.N. Shatnii, Theor. Math. Phys. 37, 1029 (1978).

    Article  MathSciNet  Google Scholar 

  43. W.N. Polyzou, Ann. Phys. 193, 367 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  44. W. Lucha, F.F. Schoberl, D. Gromes, Phys. Rep. 200, 127 (1991).

    Article  ADS  Google Scholar 

  45. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Ad. Comput. Math. 5, 329 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askold Duviryak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duviryak, A. Quantization of almost-circular orbits in the Fokker action formalism. Eur. Phys. J. Plus 129, 267 (2014). https://doi.org/10.1140/epjp/i2014-14267-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14267-y

Keywords

Navigation