Skip to main content
Log in

Molecular spinless energies of the improved Rosen-Morse potential energy model in D dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Under the circumstance of equal scalar and vector potentials, we solve the Klein-Gordon equation with the improved Rosen-Morse potential energy model in D spatial dimensions. The relativistic bound state energy equation has been obtained by using the supersymmetric WKB approximation approach. For fixed vibrational quantum number and various rotational quantum numbers, the relativistic energies for the 33 Σ g + state of the Cs2 molecule and the 51 Δ g state of the Na2 molecule increase as D increases. We observe that the behavior of the relativistic vibrational energies in higher dimensions remains similar to that of the three-dimensional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Svidzinsky, G. Chen, S. Chin, M. Kim, D. Ma, R. Murawski, A. Sergeev, M. Scully, D. Herschbach, Int. Rev. Phys. Chem. 27, 665 (2008)

    Article  Google Scholar 

  2. S.H. Dong, Wave Equation in Higher Dimensions (Springer, Berlin, 2011)

  3. J.D. Louck, W.H. Shaffer, J. Mol. Spectrosc. 4, 285 (1960)

    Article  ADS  Google Scholar 

  4. J.D. Louck, J. Mol. Spectrosc. 4, 298 (1960)

    Article  ADS  Google Scholar 

  5. J.D. Louck, J. Mol. Spectrosc. 4, 334 (1960)

    Article  ADS  Google Scholar 

  6. S.H. Dong, X.Y. Gu, Z.Q. Ma, J. Yu, Int. J. Mod. Phys. E 12, 555 (2003)

    Article  ADS  Google Scholar 

  7. Z.Q. Ma, S.H. Dong, X.Y. Gu, J. Yu, M. Lozada-Cassou, Int. J. Mod. Phys. E 13, 597 (2004)

    Article  ADS  Google Scholar 

  8. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Ann. Phys. 523, 566 (2011)

    Article  MathSciNet  Google Scholar 

  9. S.M. Ikhdair, Int. J. Mod. Phys. C 20, 25 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. H. Hassanabadi, S. Zarrinkamar, H. Rahimov, Commun. Theor. Phys. 56, 423 (2011)

    Article  ADS  MATH  Google Scholar 

  11. N. Saad, R.L. Hall, H. Ciftci, Cent. Eur. J. Phys. 6, 717 (2008)

    Article  Google Scholar 

  12. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Adv. High Energy Phys. 2011, 458087 (2011)

    Article  MathSciNet  Google Scholar 

  13. S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6, 141 (2008)

    Article  Google Scholar 

  14. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Eur. Phys. J. Plus 127, 143 (2012)

    Article  Google Scholar 

  15. T.T. Ibrahim, K.J. Oyewumi, S.M. Wyngaardt, Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  16. C.S. Jia, T. Chen, S. He, Phys. Lett. A 377, 682 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Chen, S.R. Lin, C.S. Jia, Eur. Phys. J. Plus 128, 69 (2013)

    Article  Google Scholar 

  18. J.Y. Liu, J.F. Du, C.S. Jia, Eur. Phys. J. Plus 128, 139 (2013)

    Article  Google Scholar 

  19. C.S. Jia, S.Y. Cao, Bull. Korean Chem. Soc. 34, 3425 (2013)

    Article  Google Scholar 

  20. X.Y. Chen, T. Chen, C.S. Jia, Eur. Phys. J. Plus 129, 75 (2014)

    Article  Google Scholar 

  21. N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)

    Article  ADS  Google Scholar 

  22. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)

    Article  ADS  Google Scholar 

  23. D. Steele, E.R. Lippincott, J.T. Vanderslice, Rev. Mod. Phys. 34, 239 (1962)

    Article  ADS  Google Scholar 

  24. Fayyazuddin, M. Rafi, Phys. Lett. A 205, 383 (1995)

    Article  ADS  Google Scholar 

  25. S. Noorizadeh, G.R. Pourshams, J. Mol. Struct. 678, 207 (2004)

    Article  Google Scholar 

  26. A.T. Royappa, V. Suri, J.R. McDonough, J. Mol. Struct. 787, 209 (2006)

    Article  ADS  Google Scholar 

  27. A. Soylu, O. Bayrak, I. Boztosun, Chin. Phys. Lett. 25, 2754 (2008)

    Article  ADS  Google Scholar 

  28. S.M. Ikhdair, J. Math. Phys. 51, 023525 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. K.J. Oyewumi, C.O. Akoshile, Eur. Phys. J. A 45, 311 (2010)

    Article  ADS  Google Scholar 

  30. O. Klein, Z. Phys. 76, 226 (1932)

    Article  ADS  MATH  Google Scholar 

  31. A.L.G. Rees, Proc. Phys. Soc. 59, 998 (1947)

    Article  ADS  MATH  Google Scholar 

  32. R. Rydberg, Z. Phys. 80, 514 (1933)

    Article  ADS  Google Scholar 

  33. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  34. M. Badawi, N. Bessis, G. Bessis, J. Phys. B: Atom. Molec. Phys. 5, L157 (1972)

    Article  ADS  Google Scholar 

  35. J.Y. Liu, X.T. Hu, C.S. Jia, Can. J. Chem. 92, 40 (2014)

    Article  Google Scholar 

  36. D. Li, F. Xie, L. Li, Chem. Phys. Lett. 458, 267 (2008)

    Article  ADS  Google Scholar 

  37. R.Y. Chang, C.C. Tsai, T.J. Whang, C.P. Cheng, J. Chem. Phys. 123, 224303 (2005)

    Article  ADS  Google Scholar 

  38. X.T. Hu, L.H. Zhang, C.S. Jia, Can. J. Chem. 92, 386 (2014)

    Article  Google Scholar 

  39. E.V. Aguda, Can. J. Phys. 91, 689 (2013)

    Article  ADS  Google Scholar 

  40. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Science 321, 232 (2008)

    Article  ADS  Google Scholar 

  41. A. Fioretti, D. Sofikitis, R. Horchani, X. Li, M. Pichler, S. Weber, M. Allegrini, B. Chatel, D. Comparat, P. Pillet, J. Mod. Opt. 56, 2089 (2009)

    Article  ADS  Google Scholar 

  42. I. Manai, R. Horchani, H. Lignier, P. Pillet, D. Comparat, Phys. Rev. Lett. 109, 183001 (2012)

    Article  ADS  Google Scholar 

  43. J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2000)

    Article  ADS  Google Scholar 

  44. M. Vatasescu, Nucl. Instrum. Methods B 279, 8 (2012)

    Article  ADS  Google Scholar 

  45. A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Phys. Lett. A 349, 87 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Cooper, B. Freedman, Ann. Phys. 146, 262 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Comtet, A. Bandrank, D.K. Campbell, Phys. Lett. B 150, 159 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Hruska, W.Y. Keung, U. Sukhatme, Phys. Rev. A 55, 3345 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.W. Dabrowska, A. Khare, U.P. Sukhatme, J. Phys. A: Math. Gen. 21, L195 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  50. C.S. Jia, X.G. Wang, X.K. Yao, P.C. Chen, W. Xiao, J. Phys. A: Math. Gen. 31, 4763 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Sen Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, MS., He, S. & Jia, CS. Molecular spinless energies of the improved Rosen-Morse potential energy model in D dimensions. Eur. Phys. J. Plus 129, 264 (2014). https://doi.org/10.1140/epjp/i2014-14264-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14264-2

Keywords

Navigation