Skip to main content

Diagonal quantum circuits: Their computational power and applications

Abstract.

Diagonal quantum circuits are quantum circuits comprising only diagonal gates in the computational basis. In spite of a classical feature of diagonal quantum circuits in the sense of commutativity of all gates, their computational power is highly likely to outperform classical ones and they are exploited for applications in quantum informational tasks. We review computational power of diagonal quantum circuits and their applications. We focus on the computational power of instantaneous quantum polynomial-time (IQP) circuits, which are a special type of diagonal quantum circuits. We then review an approximate generation of random states as an application of diagonal quantum circuits, where random states are an ensemble of pure states uniformly distributed in a Hilbert space. We also present a thermalizing algorithm of classical Hamiltonians by using diagonal quantum circuits. These applications are feasible to be experimentally implemented by current technology due to a simple and robust structure of diagonal gates.

This is a preview of subscription content, access via your institution.

References

  1. P.W. Shor, SIAM J. Sci. Stat. Comput. 26, 1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Hallgren, in Proceedings of the 34th ACM Symposium on Theory of Computing (ACM Press, 2002) p. 54

  3. A. Schmidt, arXiv:0912.4807 (2009)

  4. M. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys. 227, 605 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. D. Aharonov, V. Jones, Z. Landau, in Proceedings of the 38th ACM Symposium on Theory of Computing (ACM Press, 2006)

  6. P. Wocjan, J. Yard, Quantum Inf. Comput. 8, 147 (2008)

    MATH  MathSciNet  Google Scholar 

  7. D. Aharonov, I. Arad, E. Eban, Z. Landau, arXiv:quant-ph/0702008 (2007)

  8. R. Jozsa, N. Linden, Proc. R. Soc. A 8, 2011 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. L.G. Valiant, SIAM J. Comput. 31, 1229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Jozsa, A. Miyake, Proc. R. Soc. A 464, 3089 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. D. Shepherd, M.J. Bremner, Proc. R. Soc. A 465, 1413 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. M.J. Bremner, R. Jozsa, D.J. Shepherd, Proc. R. Soc. A 467, 459 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. X. Ni, M. van den Nest, Quantum Inf. Comput. 13, 0054 (2013)

    MathSciNet  Google Scholar 

  14. M.J. Hoban, J.J. Wallman, H. Anwar, N. Usher, R. Raussendorf, D.E. Browne, arXiv:1304.2667 (2013)

  15. K. Fujii, T. Morimae, arXiv:1311.2128 (2013)

  16. Y. Nakata, P.S. Turner, M. Murao, Phys. Rev. A 86, 012301 (2012)

    Article  ADS  Google Scholar 

  17. P. Aliferis, F. Brito, D.P. DiVincenzo, J. Preskill, M. Steffen, B.M. Terhal, New J. Phys. 11, 013061 (2009)

    Article  ADS  Google Scholar 

  18. S. Lloyd, Phys. Rev. A 55, 1613 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.M. Renes, R. Blume-Kohout, A.J. Scott, C.M. Caves, J. Math. Phys. 45, 6 (2004)

    Article  MathSciNet  Google Scholar 

  20. J. Radhakrishnan, M. Rotteler, P. Sen, Algorithmica 55, 490 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Sen, IEEE Conf. Comput. Complex., 274 (2006)

  22. C. Dankert, R. Cleve, J. Emerson, E. Livine, Phys. Rev. A 80, 012304 (2009)

    Article  ADS  Google Scholar 

  23. J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Science 302, 2098 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. D.P. DiVincenzo, D.W. Leung, B.M. Terhal, IEEE Trans. Inf. Theory 48, 580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Oliveira, O.C.O. Dahlsten, M.B. Plenio, Phys. Rev. Lett. 98, 130502 (2007)

    Article  ADS  Google Scholar 

  26. O.C.O. Dahlsten, R. Oliveira, M.B. Plenio, J. Phys. A: Math. Theor. 40, 8081 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M. Znidaric, Phys. Rev. A 78, 032324 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. A.W. Harrow, R.A. Low, Commun. Math. Phys. 291, 257 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. I.T. Diniz, D. Jonathan, Commun. Math. Phys. 304, 281 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A.W. Harrow, R.A. Low Proceedings of RANDOM 2009, LNCS, Vol. 5687 (2009) pp. 548--561

    Article  MathSciNet  Google Scholar 

  31. F.G.S.L. Brandao, A.W. Harrow, M. Horodecki, arXiv:1208.0692 (2012)

  32. P. Ćwikliński, M. Horodecki, M. Mozrzymas, L. Pankowski, M. Studziński, J. Phys. A: Math. Theor. 46, 305301 (2013)

    Article  Google Scholar 

  33. A. Ambainis, J. Emerson IEEE Conference on Computational Complexity (IEEE, 2007) pp. 129--140

    Article  Google Scholar 

  34. R.A. Low, Proc. R. Soc. A 465, 3289 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Y. Nakata, M. Murao, Int. J. Quantum Inf. 11, 1350062 (2013)

    Article  MathSciNet  Google Scholar 

  36. Y. Nakata, M. Koashi, M. Murao, New J. Phys. 16, 053043 (2014)

    Article  ADS  Google Scholar 

  37. S. Arora, B. Barak, Computational complexity: a modern approach (Cambridge University Press, New York, USA, 2009)

  38. C. Papadimitriou, Computational complexity (Addison Wesley Publishing Company, Chichester, UK, 1994)

  39. E. Bernstein, U. Vazirani, in Proceedings of the 25th annual ACM symposium on Theory of computing (ACM, 1993) pp. 11--20

  40. L. Adleman, J. DeMarrais, M.-D. Huang, SIAM J. Comput. 26, 1524 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Aaronson, in STOC 10 Proceedings of the forty-second ACM symposium on Theory of computing (ACM, 2009) pp. 141--150

  42. M. van den Nest, Quantum Inf. Comput. 10, 0258 (2010)

    MathSciNet  Google Scholar 

  43. S. Aaronson, Proc. R. Soc. A 461, 3473 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. S. Toda, SIAM J. Comput. 20, 865 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  45. Y. Han, L. Hemaspaandra, T. Thierauf, SIAM J. Comput. 26, 59 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. M.L. Metha, Random Matrices (Academic Press, 1990)

  47. P.O. Boykin, V. Roychowdhury, Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  48. A. Ambainis, M. Mosca, A. Tapp, R. de Wolf, in Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (2000) pp. 547--553

  49. A. Ambainis, A. Smith, in Proceedings of RANDOM’04 (2004) pp. 249--260

  50. P.A. Dickinson, A. Nayak, AIP Conf. Proc. 864, 18 (2006)

    Article  ADS  Google Scholar 

  51. P. Hayden, D. Leung, P.W. Shor, A. Winter, Commun. Math. Phys. 250, 371 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. G. Aubrun, Commun. Math. Phys. 288, 1103 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. H.-K. Lo, Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  54. A. Harrow, P. Hyden, D. Leung, Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  55. B.M. Terhal, David P. DiVincenzo, D.W. Leung, Phys. Rev. Lett. 86, 5807 (2001)

    Article  ADS  Google Scholar 

  56. M. Hastings, Nat. Phys. 5, 255 (2009)

    Article  Google Scholar 

  57. E. Lubkin, J. Math. Phys. 19, 1028 (1978)

    Article  MATH  ADS  Google Scholar 

  58. D.N. Page, Phys. Rev. Lett. 71, 1291 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. S.K. Foong, S. Kanno, Phys. Rev. Lett. 72, 1148 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. J. Sanchez-Ruiz, Phys. Rev. E 52, 5653 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  61. K. Zyczkowski, H.J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. P. Hayden, D.W. Leung, A. Winter, Commun. Math. Phys. 265, 95 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. O. Giraud, J. Phys. A: Math. Theor. 40, F1053 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. P. Facchi, U. Marzolino, G. Parisi, S. Pascazio, A. Scardicchio, Phys. Rev. Lett. 101, 050502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  65. A. De Pasquale, P. Facchi, G. Parisi, S. Pascazio, A. Scardicchio, Phys. Rev. A 81, 052324 (2010)

    Article  ADS  Google Scholar 

  66. C. Nadal, S.N. Majumdar, M. Vergassola, Phys. Rev. Lett. 104, 110501 (2010)

    Article  ADS  Google Scholar 

  67. C. Nadal, S.N. Majumdar, M. Vergassola, J. Stat. Phys. 142, 403 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and quantum computational computation (AMS, Providence, USA, 2002)

  69. G. Toth, J.J. Garcia-Ripoll, Phys. Rev. A 75, 042311 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  70. R.A. Low, PhD Thesis, University of Bristol (2010)

  71. M. Leudox, The Concentration of Measure Phenomenon (AMS Monographs, Providence, USA, 2001)

  72. J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, USA, 1955)

  73. E. Schrodinger, Statistical Thermodynamics (Dover Mineola, New York, USA, 1989)

  74. H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  76. S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  77. K. Fujii, Y. Nakata, M. Ohzeki, M. Murao, Phys. Rev. Lett. 110, 120502 (2013)

    Article  ADS  Google Scholar 

  78. K. Temme, T.J. Osborne, K. Vollbrecht, D. Poulin, F. Verstraete, Nature 471, 87 (2011)

    Article  ADS  Google Scholar 

  79. A. Riera, C. Gogolin, J. Eisert, Phys. Rev. Lett. 108, 080402 (2012)

    Article  ADS  Google Scholar 

  80. A. Kitaev, arXiv:quant-ph/9511026

  81. N.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  82. F. Dupuis, M. Berta, J. Wullschleger, R. Renner, arXiv:1012.6044 (2010)

  83. W. Brown, O. Fawzi, arXiv:1307.0632 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Nakata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakata, Y., Murao, M. Diagonal quantum circuits: Their computational power and applications. Eur. Phys. J. Plus 129, 152 (2014). https://doi.org/10.1140/epjp/i2014-14152-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14152-9

Keywords

  • Quantum Circuit
  • Random State
  • Computational Basis
  • Classical Simulatability
  • Polynomial Hierarchy