Quantum Google algorithm

Construction and application to complex networks

Abstract

We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998).

    Article  Google Scholar 

  2. 2.

    L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: Bringing order to the web (1999).

  3. 3.

    A. Arratia, C. Marijuán, arXiv:1105.1595 (2011).

  4. 4.

    B. Georgeot, O. Giraud, D.L. Shepelyansky, Phys. Rev. E 81, 056109 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).

  6. 6.

    A. Galindo, M.A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (ACM, 1996) pp. 212--219.

  8. 8.

    A. Galindo, M.A. Martin-Delgado, Phys. Rev. A 62, 062303 (2000).

    ADS  Article  Google Scholar 

  9. 9.

    G.D. Paparo, V. Dunjko, A. Makmal, M.A. Martin-Delgado, H.J. Briegel, arXiv:1401.4997 (2014).

  10. 10.

    T.D. Ladd et al., Nature 464, 45 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    G.D. Paparo, M. Martin-Delgado, Sci. Rep. 2, 444 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    G.D. Paparo, M. Müller, F. Comellas, M.A. Martin-Delgado, Sci. Rep. 3, 2773 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (New York, 1984) p. 8.

  14. 14.

    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    C. Elliott, The DARPA quantum network, in Quantum Communications and Cryptography, edited by A.V. Sergienko (CRC Press, Boca Raton, 2006) Chapt. 4, pp. 83--102.

  16. 16.

    A. Poppe, M. Peev, O. Maurhart, Int. J. Quantum Inf. 6, 209 (2008).

    Article  Google Scholar 

  17. 17.

    M. Sasaki et al., Opt. Express 19, 10387 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    http://swissquantum.idquantique.com/ (17-06-2013).

  19. 19.

    D. Lancho, J. Martinez, D. Elkouss, M. Soto, V. Martin, QKD in standard optical telecommunications networks, in Quantum Communication and Quantum Networking (2010) pp. 142--149.

  20. 20.

    T. Länger, G. Lenhart, New J. Phys. 11, 055051 (2009).

    Article  Google Scholar 

  21. 21.

    H.J. Kimble, Nature 453, 1023 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    D.S. Wiersma, Science 327, 1333 (2010).

    Article  Google Scholar 

  23. 23.

    M.-X. Luo, G. Xu, X.-B. Chen, Y.-X. Yang, X. Wang, Sci. Rep. 4, 4571 (2014).

    ADS  Google Scholar 

  24. 24.

    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

    ADS  Article  Google Scholar 

  25. 25.

    W. Dür, H.J. Briegel, J. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999).

    ADS  Article  Google Scholar 

  26. 26.

    N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Gisin, Phys. Rev. A 83, 012318 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    C. Simon et al., Eur. Phys. J. D 58, 1 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    B. Lauritzen et al., Phys. Rev. Lett. 104, 080502 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    A. Acín, J.I. Cirac, M. Lewenstein, Nat. Phys. 3, 256 (2007).

    Article  Google Scholar 

  31. 31.

    S. Perseguers, J.I. Cirac, A. Acín, M. Lewenstein, J. Wehr, Phys. Rev. A 77, 022308 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Z.-W. Wei, B.-H. Wang, X.-P. Han, Sci. Rep. 3, 1222 (2013).

    ADS  Google Scholar 

  33. 33.

    M. Cuquet, J. Calsamiglia, Phys. Rev. Lett. 103, 240503 (2009).

    ADS  Article  MathSciNet  Google Scholar 

  34. 34.

    M. Cuquet, J. Calsamiglia, Phys. Rev. A 83, 032319 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    D. Watts, S. Strogatz, Nature 393, 440 (1998).

    ADS  Article  Google Scholar 

  36. 36.

    A.-L. Barabási, R. Albert, Science 286, 509 (1999).

    ADS  Article  MathSciNet  Google Scholar 

  37. 37.

    C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003).

    ADS  Article  Google Scholar 

  39. 39.

    A.-L. Barabási, Z.N. Oltvai, Nat. Rev. Genet. 5, 101 (2004).

    Article  Google Scholar 

  40. 40.

    A.-L. Barabási, Z. Dezso, E. Ravasz, S.-H. Yook, Z. Oltvai, AIP Conf. Proc. 661, 1 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    M.E. Newman, SIAM Rev. 45, 167 (2003).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  42. 42.

    M. Newman, Networks: An Introduction (Oxford University Press, Inc., 2010).

  43. 43.

    R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010).

  44. 44.

    Timeline of web search engines --- Wikipedia, the free encyclopedia (2014), http://en.wikipedia.org/w/index.php?title=Timeline_of_web_search_engines&oldid=616361284.

  45. 45.

    M. Marchiori, Comput. Netw. ISDN Syst. 29, 1225 (1997).

    Article  Google Scholar 

  46. 46.

    http://www.worldwidewebsize.com.

  47. 47.

    A.N. Langville, C.D. Meyer, Internet Math. 1, 335 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  48. 48.

    C.D. Meyer, Matrix Analysis and Applied Linear Algebra, Vol. 2 (Siam, 2000).

  49. 49.

    T. Haveliwala, S. Kamvar, The second eigenvalue of the Google matrix, Stanford University Technical Report (2003).

  50. 50.

    M. Szegedy, Quantum speed-up of Markov chain based algorithms, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004 (2004) pp. 32--41.

  51. 51.

    D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (ACM, 2001) pp. 50--59.

  52. 52.

    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    ADS  Article  MATH  Google Scholar 

  53. 53.

    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006).

    ADS  Article  MathSciNet  Google Scholar 

  54. 54.

    A.-L. Barabási, R. Albert, H. Jeong, Physica A: Stat. Mech. Appl. 281, 69 (2000).

    ADS  Article  Google Scholar 

  55. 55.

    A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

    ADS  Article  Google Scholar 

  56. 56.

    H. Jeong, P. Mason, A.-L. Barabasi, Z. Oltvai, Nature 411, 41 (2001).

    ADS  Article  Google Scholar 

  57. 57.

    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000).

    ADS  Article  Google Scholar 

  58. 58.

    R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000).

    ADS  Article  Google Scholar 

  59. 59.

    D.S. Callaway, M.E. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000).

    ADS  Article  Google Scholar 

  60. 60.

    A. Vázquez, Y. Moreno, Phys. Rev. E 67, 015101 (2003).

    ADS  Article  Google Scholar 

  61. 61.

    M. Boguna, D. Krioukov, K. Claffy, Nat. Phys. 5, 74 (2008).

    Article  Google Scholar 

  62. 62.

    S. Carmi, S. Carter, J. Sun, D. Ben-Avraham, Phys. Rev. Lett. 102, 238702 (2009).

    ADS  Article  Google Scholar 

  63. 63.

    S.H. Lee, P. Holme, Phys. Rev. Lett. 108, 128701 (2012).

    ADS  Article  Google Scholar 

  64. 64.

    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011).

    ADS  Article  Google Scholar 

  65. 65.

    T. Nepusz, T. Vicsek, Nat. Phys. 8, 568 (2012).

    Article  Google Scholar 

  66. 66.

    V. Nicosia, R. Criado, M. Romance, G. Russo, V. Latora, Sci. Rep. 2, 218 (2012).

    ADS  Article  Google Scholar 

  67. 67.

    A.-L. Barabási, Philos. Trans. R. Soc. A 371, 20120512 (2013).

    Article  Google Scholar 

  68. 68.

    A. Reka, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999).

    ADS  Article  Google Scholar 

  69. 69.

    B. Bollobás, C. Borgs, J. Chayes, O. Riordan, Directed scale-free graphs, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2003) pp. 132--139.

  70. 70.

    A. Hagberg, P. Swart, D.S. Chult, Exploring network structure, dynamics, and function using NetworkX Tech. Rep., Los Alamos National Laboratory (LANL) (2008).

  71. 71.

    V. Batagelj, A. Mrvar, Pajek datasets, http://vlado.fmf.uni-lj.si/pub/networks/data (2006).

  72. 72.

    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1551 (2002).

    ADS  Article  Google Scholar 

  73. 73.

    A.-L. Barabási, E. Ravasz, T. Vicsek, Physica A: Stat. Mech. Appl. 299, 559 (2001).

    ADS  Article  MATH  Google Scholar 

  74. 74.

    J.D. Noh, Phys. Rev. E 67, 045103 (2003).

    ADS  Article  Google Scholar 

  75. 75.

    F. Comellas, A. Miralles, Physica A: Stat. Mech. Appl. 388, 2227 (2009).

    ADS  Article  MathSciNet  Google Scholar 

  76. 76.

    F. Comellas, A. Miralles, J. Phys. A: Math. Theor. 42, 425001 (2009).

    ADS  Article  MathSciNet  Google Scholar 

  77. 77.

    H.K. Lo, T. Spiller, S. Popescu, Introduction to Quantum Computation and Information (World Scientific Publishing Company, 1998).

  78. 78.

    D. Donato, L. Laura, S. Leonardi, S. Millozzi, Eur. Phys. J. B 38, 239 (2004).

    ADS  Article  Google Scholar 

  79. 79.

    G. Pandurangan, P. Raghavan, E. Upfal, Using PageRank to Characterize Web Structure, in Computing and Combinatorics, Vol. 2387 (Springer, 2002) pp. 330--339.

  80. 80.

    F. de Lima Marquezino, R. Portugal, S. Boettcher, Phys. Rev. A 87, 012329 (2013).

    ADS  Article  Google Scholar 

  81. 81.

    F. Caruso, arXiv:1312.1832 (2013).

  82. 82.

    A. Makmal, M. Zhu, D. Manzano, M. Tiersch, H.J. Briegel, arXiv:1309.5253 (2013).

  83. 83.

    S.E. Venegas-Andraca, Quantum Inf. Process. 11, 1015 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  84. 84.

    M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migdał, Phys. Rev. X 3, 041007 (2013).

    Google Scholar 

  85. 85.

    B. Kollár, J. Novotny, T. Kiss, I. Jex, arXiv:1404.4509 (2014).

  86. 86.

    J.D. Whitfield, Reflections in Hilbert Space II: Szegedy's Scheme for Markov Chain Quantization (2012).

  87. 87.

    S. Garnerone, P. Zanardi, D.A. Lidar, Phys. Rev. Lett. 108, 230506 (2012).

    ADS  Article  Google Scholar 

  88. 88.

    S. Garnerone, Phys. Rev. A 86, 032342 (2012).

    ADS  Article  Google Scholar 

  89. 89.

    E. Sánchez-Burillo, J. Duch, J. Gómez-Gardeñes, D. Zueco, Sci. Rep. 2, 605 (2012).

    Article  Google Scholar 

  90. 90.

    F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009).

    Article  Google Scholar 

  91. 91.

    S. Diehl et al., Nat. Phys. 4, 878 (2008).

    Article  Google Scholar 

  92. 92.

    A.M. Childs, D. Gosset, Z. Webb, Science 339, 791 (2013).

    ADS  Article  MathSciNet  Google Scholar 

  93. 93.

    A.M. Childs, Phys. Rev. Lett. 102, 180501 (2009).

    ADS  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. D. Paparo.

Additional information

Contribution to the Focus Point “Quantum information and complexity” edited by S. Mancini, G. Marmo, S. Pascazio.

This contribution is based on the talk presented by G.D. Paparo at the workshop Noise Information & Complexity at Quantum Scale at the Ettore Majorana Centre, Erice (Sicily), Italy 6th–12th October 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paparo, G.D., Müller, M., Comellas, F. et al. Quantum Google algorithm. Eur. Phys. J. Plus 129, 150 (2014). https://doi.org/10.1140/epjp/i2014-14150-y

Download citation

Keywords

  • Quantum Algorithm
  • Connectivity Structure
  • Classical Algorithm
  • Stochastic Matrix
  • Quantum Walk