A note on the symmetric and antisymmetric constituents of weakly nonlinear solutions of a classical wind-driven ocean circulation model

  • Fulvio Crisciani
  • Gualtiero BadinEmail author
Regular Article


A classical model of wind-driven ocean circulation is studied in the weakly nonlinear approximation. An asymptotic expansion for small Rossby number is applied to the separate symmetric and asymmetric components of the stream function, where the symmetry refers to a north-south reflection transformation. The asymptotic expansion allows for the formulation of a coupled set of nonlinear partial differential equations for the two components. Results show that the asymmetric component is responsible for the formation of steady cyclones and anticyclones that cause the deformation of the total stream function of the system. Higher-order components of the stream function in the asymptotic expansion are forced by an effective wind stress arising from lower-order entries in the Jacobian term, and these effective stresses act only to redistribute vorticity.


Vorticity Wind Stress Stream Function Relative Vorticity Additional Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.M. Stommel, Trans. Amer. Geophys. Union 29, 202 (1948).ADSCrossRefGoogle Scholar
  2. 2.
    J. Pedlosky, Ocean Circulation Theory (Springer-Verlag, 1996) pp. 453.Google Scholar
  3. 3.
    G. Veronis, Deep-Sea Res. 13, 17 (1966).Google Scholar
  4. 4.
    G. Veronis, Deep-Sea Res. 13, 31 (1966).Google Scholar
  5. 5.
    R.R. Blandford, Deep-Sea Res. 18, 739 (1971).Google Scholar
  6. 6.
    C.W. Boening, Dyn. Atmos. Oceans 10, 63 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    K. Bryan, J. Atmos. Sci. 20, 594 (1963).ADSCrossRefGoogle Scholar
  8. 8.
    F. Crisciani, T. Ozgokmen, Dyn. Atmos. Oceans 33, 135 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    G. Badin, F. Cavallini, F. Crisciani, Nuovo Cimento B 124, 653 (2009).ADSGoogle Scholar
  10. 10.
    G. Badin, A.M Barry, F. Cavallini, F. Crisciani, Eur. Phys. J. Plus 127, 45 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Arakawa, J. Comput. Phys. 1, 119 (1966).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition (Cambridge University Press, Cambridge, 2007) pp. 1256.Google Scholar
  13. 13.
    J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition (Springer-Verlag, 1987) pp. 710.Google Scholar
  14. 14.
    F. Cavallini, F. Crisciani, Quasi-Geostrophic Theory of Oceans and Atmosphere (Springer, 2012) pp. 385.Google Scholar
  15. 15.
    G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2006) pp. 745.Google Scholar
  16. 16.
    R. Zhang, G.K. Vallis, J. Phys. Oceanogr. 37, 2053 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    F. Crisciani, R. Mosetti, R. Purini, Eur. Phys. J. Plus 128, 18 (2013).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TriesteTriesteItaly
  2. 2.Institute of OceanographyUniversity of HamburgHamburgGermany

Personalised recommendations