Two notes on Grover’s search: Programming and discriminating

Regular Article
Part of the following topical collections:
  1. Focus Point on Quantum information and complexity

Abstract

In this work we address two questions concerning Grover’s algorithm. In the first part we give an answer to the question on how to employ Grover’s algorithm for actual search over database. We introduce a quantum model of an unordered phone book (quantum database) with programmable queries to search in the phone book either for a number or for a name. In the second part we investigate how successful the algorithm can be if the number of elements of the database is not known precisely. This question reduces to analysis of the distinguishability of states occurring during Grover’s algorithm. We found that using an unambiguous discrimination scheme even a seemingly good guess that is close to the optimal one, can result in a rather small success rate.

References

  1. 1.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    A. Ambainis, SIAM J. Comput. 37, 210 (2007).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    C.H. Bennett, E. Bernstein, C. Brassard, U. Vazirani, SIAM J. Comput. 26, 1510 (1997).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).Google Scholar
  5. 5.
    N. Brunner, S. Pironio, A. Acin, N. Gisin, A.A. Méthot, V. Scarani, Phys. Rev. Lett. 100, 210503 (2008).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    M.M. Wolf, D. Perez-Garcia, Phys. Rev. Lett. 102, 190504 (2009).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Chefles, A. Kitagawa, M. Takeoka, M. Sasaki, J. Twamley, J. Phys. A 40, 10183 (2007).ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    X. Wu, R. Duan, Phys. Rev. A 78, 012303 (2008).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Zalka, Phys. Rev. A 60, 2746 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    M. Sedlák, Acta Phys. Slovaca 59, 653 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. Chefles, S.M. Barnett, Phys. Lett. A 250, 223 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A.S. Holevo, J. Multivar. Anal. 3, 337 (1973).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    S.M. Barnett, S. Croke, J. Phys. A 42, 062001 (2009).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Ban, K. Kurokawa, R. Momose, O. Hirota, Int. J. Theor. Phys. 36, 1269 (1997).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    C. Cafaro, S. Mancini, Physica A 391, 1610 (2012).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    N. Shenvi, K.R. Brown, K.B. Whaley, Phys. Rev. A 68, 052313 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    O. Regev, L. Schiff, Impossibility of a Quantum Speed-Up with a Faulty Oracle, in Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Vol. 1 (2008) p. 773.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of PhysicsHunter College of CUNYNew YorkUSA
  3. 3.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations