Skip to main content

Determination of the complex refractive index of cell cultures by reflectance spectrometry

Abstract

In this paper we propose a new approach to using reflectance spectrometry in connection with the Kramers-Kronig analysis for the determination of the complex refractive index of biological cells. Applying this procedure, the real and imaginary parts of the refractive index (refractive index and extinction coefficient) can be simultaneously determined. The accuracy of this procedure in the determination of the refractive index and extinction coefficient of culture media proved to be comparable with spectroscopic ellipsometry. Applying this procedure on the human umbilical vein endothelial cells (HUVEC), the results obtained from time-series measurements showed significant changes in the complex refractive index of cell cultures within 72h, the most important increases for both real and imaginary parts of the refractive index being recorded in the first 24h, when synthesis processes are happening. Thus, the analysis of the time-dependent changes in the complex refractive index provides information about the frequencies of the modifications that occur on both organizational structure and cells composition during the cell cycle. In conclusion, the combination of reflectance spectrometry with the Kramers-Kronig analysis is a feasible way to determine the complex refractive index of biological cells and to assess the events taking place during the cell cycle.

This is a preview of subscription content, access via your institution.

References

  1. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P.J. Magistretti, Opt. Expr. 13, 9361 (2005).

    ADS  Article  Google Scholar 

  2. K. Rajan, S.U. Bista, W. Pin, S. Kevin, C. Serah, J.B. Christopher, J.H. Douglas, E.B. Randall, L. Yang, J. Biomed. Opt. 16, 070503 (2011).

    Article  Google Scholar 

  3. M. Suissa, C. Place, E. Goillot, E. Freyssingeas, Eur. Phys. J. E 26, 4 (2008).

    Article  Google Scholar 

  4. V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S.. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, J Van Dam, M.S. Feld, Nature 406, 35 (2000).

    ADS  Article  Google Scholar 

  5. S. Hariharan, P. Prabhakar, L. Yang, R.C. Ilker, D.R. Jeremy, K.R. Hemant, E.B. Randall, B. Vadim, Opt. Lett. 34, 518 (2009).

    Article  Google Scholar 

  6. F. Zernike, Physica 9, 686 (1942).

    ADS  Article  Google Scholar 

  7. G. Nomarski, J. Phys. Radium. 16, 9 (1955).

    Google Scholar 

  8. C.L. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K.A. Nugent, L.M.D. Delbridge, Proc. Aust. Physiol. Pharmacol. Soc. 34, 121 (2004).

    Google Scholar 

  9. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, G. von Bally, J. Biomed. Opt. 11, 034005 (2006).

    ADS  Article  Google Scholar 

  10. M.H. Jericho, H.J. Kreuzer, M. Kanka, R. Riesenberg, Appl. Optics 51, 1503 (2012).

    ADS  Article  Google Scholar 

  11. R.A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, S.C. Esener, Biomed. Microdevices 7, 93 (2005).

    Article  Google Scholar 

  12. C.L. Curl, C.J. Bellair, T. Harris, B.E. Allman, P.J. Harris, A.G. Stewart, A. Roberts, K.A. Nugent, L.M.D. Delbridge, Cytometry Part. A 65, 88 (2005).

    Article  Google Scholar 

  13. J.C. Neto, A. Ubirajara, R.T. Gazzinelli, O.N. Mesquita, Biophys. J. 91, 1108 (2006).

    ADS  Article  Google Scholar 

  14. N. Ghosh, P. Buddhiwant, A. Uppal, S.K. Majumder, H.S. Patel, P.K. Guptaa, Appl. Phys. Lett. 88, 084101 (2006).

    ADS  Article  Google Scholar 

  15. X.J. Liang, A.Q. Liu, C.S. Limb, T.C. Ayi, P.H. Yap, Sensor Actuator A 133, 349 (2007).

    Article  Google Scholar 

  16. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R.R. Dasari, M.S. Feld, J. Phys. Chem. A 113, 13327 (2009).

    Article  Google Scholar 

  17. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R.R. Dasari, M.S. Feld, Nat. Methods 4, 717 (2007).

    Article  Google Scholar 

  18. K.G. Phillips, S.L. Jacques, O.J.T. McCarty, Phys. Rev. Lett. 109, 118105 (2012).

    ADS  Article  Google Scholar 

  19. K.-E. Peiponen, V. Lucarini, E.M. Vartiainen, J.J. Saarinen, Eur. Phys. J. B 41, 61 (2004).

    ADS  Article  Google Scholar 

  20. R. De L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).

    ADS  Article  Google Scholar 

  21. H.A. Kramers, Atti Congr. Intern. Fis. Como 2, 545 (1927).

    Google Scholar 

  22. A. Pinchuk, J. Quantum Spectr. Ra. 85, 211 (2004).

    ADS  Article  Google Scholar 

  23. M. Friebel, M. Meinke, J. Biomed. Opt. 10, 064019 (2005).

    ADS  Article  Google Scholar 

  24. L. Cherkezyan, H. Subramanian, V. Stoyneva, J.D. Rogers, S. Yang, D. Damania, A. Taflove, V.I. Backman, Opt. Lett. 37, 1601 (2012).

    ADS  Article  Google Scholar 

  25. L.X. Cundin, W.P. Roach, arXiv:1010.3752v1 [q-bio.TO] (2010).

  26. P. Grosse, V. Offermann, Appl. Phys. 52, 138 (1999).

    Article  Google Scholar 

  27. F. Wooten, Optical Properties of Solids (Academic Press, New York, USA, 1972).

  28. H.Q. Xu, H.P. Hao, X. Zhang, Y. Pan, Acta Pharmacol. Sin. 25, 412 (2004).

    Google Scholar 

  29. S.M. Gifford, M.A. Grummer, S.A. Pierre, J.L. Austin, J. Zheng, I.M. Bird, J. Endocrinol. 182, 485 (2004).

    Article  Google Scholar 

  30. J. Westra, J.M. Kuldo, M.H. van Rijswijk, G. Molema, P.C. Limburg, Int. Immunopharmacol. 4, 1259 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Antonina Calin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calin, M.A., Calin, M.R. & Munteanu, C. Determination of the complex refractive index of cell cultures by reflectance spectrometry. Eur. Phys. J. Plus 129, 116 (2014). https://doi.org/10.1140/epjp/i2014-14116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14116-1

Keywords

  • Refractive Index
  • Imaginary Part
  • Human Umbilical Vein Endothelial Cell
  • Biological Cell
  • Complex Refractive Index