Skip to main content
Log in

On the origins and the historical roots of the Higgs boson research from a bibliometric perspective

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The subject of our present paper is the analysis of the origins or historical roots of the Higgs boson research from a bibliometric perspective, using a segmented regression analysis in combination with a method named reference publication year spectroscopy (RPYS). Our analysis is based on the references cited in the Higgs boson publications published since 1974. The objective of our analysis consists of identifying specific individual publications in the Higgs boson research context to which the scientific community frequently had referred to. We are interested in seminal works which contributed to a high extent to the discovery of the Higgs boson. Our results show that researchers in the Higgs boson field preferably refer to more recently published papers —particularly papers published since the beginning of the sixties. For example, our analysis reveals seven major contributions which appeared within the sixties: Englert and Brout (1964), Higgs (1964, 2 papers), and Guralnik et al. (1964) on the Higgs mechanism as well as Glashow (1961), Weinberg (1967), and Salam (1968) on the unification of weak and electromagnetic interaction. Even if the Nobel Prize award highlights the outstanding importance of the work of Peter Higgs and Francois Englert, bibliometrics offer the additional possibility of getting hints to other publications in this research field (especially to historical publications), which are of vital importance from the expert point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CERN, http://press.web.cern.ch/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson (2012).

  2. A. Cho, Science 338, 1524 (2012).

    Article  ADS  Google Scholar 

  3. L. Lederman, D. Teresi, The God particle: If the universe is the answer, what is the question? (Houghton Mifflin, Boston, 1993).

  4. CERN, http://home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson (2013).

  5. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) DOI:10.1103/PhysRevLett.13.321.

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Higgs, Phys. Lett. 12, 132 (1964) DOI:10.1016/0031-9163(64)91136-9.

    Article  ADS  Google Scholar 

  7. P. Higgs, Phys. Rev. Lett. 13, 508 (1964) DOI:10.1103/PhysRevLett.13.508.

    Article  ADS  MathSciNet  Google Scholar 

  8. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964) DOI:10.1103/PhysRevLett.13.585.

    Article  ADS  Google Scholar 

  9. F. Close, The Infinity Puzzle. How The Quest to Understand Quantum Field Theory Led to Extraordinary Science, High Politics, and The World’s Most Expensive Experiment (Oxford University Press, Oxford, 2011).

  10. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) DOI:10.1103/PhysRevLett.19.1264.

    Article  ADS  Google Scholar 

  11. A. Salam, in Elementary Particle Physics (Nobel Symposium No. 8), edited by N. Svartholm (Wiley-Interscience, London, 1968) pp. 367--377.

  12. S.L. Glashow, Nucl. Phys. 22, 579 (1961) DOI:10.1016/0029-5582(61)90469-2.

    Article  Google Scholar 

  13. L. Bornmann, W. Marx, J. Informetrics 7, 84 (2013) DOI:10.1016/j.joi.2012.09.003.

    Article  Google Scholar 

  14. W. Marx, L. Bornmann, A. Barth, L. Leydesdorff, J. Assoc. Inf. Sci. Technol. 65, 751 (2014) DOI:10.1002/asi.23089.

    Article  Google Scholar 

  15. J. Bleck-Neuhaus, Elementare Teilchen: Von den Atomen über das Standard-Modell bis zum Higgs-Boson, 2nd edition (Springer Spektrum, Heidelberg, 2013).

  16. W. Marx, J. Assoc. Inf. Sci. Technol. 62, 433 (2011) DOI:10.1002/asi.21479.

    Google Scholar 

  17. E. Brusilovskiy, The piecewise regression model as a response modeling tool, in Proceedings of the 17th Conference of North Eastern SAS User Group (NESUG) in Baltimore, www.nesug.org/proceedings/ (2004).

  18. P.M. Lerman, J. R. Stat. Soc. Ser. C (Appl. Stat.) 29, 77 (1980).

    Google Scholar 

  19. V.E. McGee, W.T. Carleton, J. Am. Stat. Ass. 65, 1109 (1970) DOI:10.2307/2284278.

    Article  Google Scholar 

  20. U.H. Sauter, R. Mutz, B.D. Munro, Wood Fiber Sci. 31, 416 (1999).

    Google Scholar 

  21. X. Shuai, Z. Zhou, R. Yost, J. Agr. Biol. Environ. Stat. 8, 240 (2003) DOI:10.1198/1085711031580.

    Article  Google Scholar 

  22. N. Draper, H. Smith, Applied Regression, 3rd edition (Wiley, New York, 1998).

  23. SAS Institute Inc. SAS/STAT 9.3 User’s Guide (SAS Institute Inc. Cary, NC: 2011) p. 5146--5150.

  24. W. Marx, L. Bornmann, M. Cardona, J. Assoc. Inf. Sci. Technol. 61, 2061 (2010) DOI:10.1002/asi.21377.

    Article  Google Scholar 

  25. A.F.J. Van Raan, Scientometrics 47, 347 (2000) DOI:10.1023/A:1005647328460.

    Article  Google Scholar 

  26. K.W. McCain, J. Assoc. Inf. Sci. Technol. 63, 2129 (2012) DOI:10.1002/asi.22719.

    Article  Google Scholar 

  27. C.F. Von Weizsäcker, Z. Phys. 88, 612 (1934) DOI:10.1007/BF01333110.

    Article  ADS  Google Scholar 

  28. E.J. Williams, Phys. Rev. 45, 729 (1934) DOI:10.1103/PhysRev.45.729.

    Article  ADS  Google Scholar 

  29. F. Bloch, Phys. Rev. 52, 54 (1937) DOI:10.1103/PhysRev.52.54.

    Article  ADS  Google Scholar 

  30. L.D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948).

    Google Scholar 

  31. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) DOI:10.1103/PhysRev.122.345.

    Article  ADS  Google Scholar 

  32. J. Goldstone, Il Nuovo Cimento 19, 154 (1961) DOI:10.1007/BF02812722.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Higgs, Phys. Rev. 145, 1156 (1966) DOI:10.1103/PhysRev.145.1156.

    Article  ADS  MathSciNet  Google Scholar 

  34. T.W.B. Kibble, Phys. Rev. 155, 1554 (1967) DOI:10.1103/PhysRev.155.1554.

    Article  ADS  Google Scholar 

  35. A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964) DOI:10.1016/0031-9163(64)90711-5.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Nobel Lecture, The Nobel Prize in Physics 1979, nobelprize.org, Nobel Media AB 2013, Web 26 September 2013,http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/ (1979).

  37. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972) DOI:10.1016/0550-3213(72)90279-9.

    Article  ADS  MathSciNet  Google Scholar 

  38. Nobel Lecture, The Nobel Prize in Physics 1999. nobelprize.org, Nobel Media AB 2013, Web 26 September 2013,http://www.nobelprize.org/nobel_prizes/physics/laureates/1999/ (1999).

  39. H.P. Nilles, Phys. Rep. 110, 1 (1984) DOI:10.1016/0370-1573(84)90008-5.

    Article  ADS  Google Scholar 

  40. H.E. Haber, Phys. Rep. 117, 75 (1985) DOI:10.1016/0370-1573(85)90051-1.

    Article  ADS  Google Scholar 

  41. L. Bornmann, H.-D. Daniel, J. Document 64, 45 (2008) DOI:10.1108/00220410810844150.

    Article  Google Scholar 

  42. J. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976) DOI:10.1016/0550-3213(76)90184-X.

    Article  ADS  Google Scholar 

  43. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977) DOI:10.1103/PhysRevD.16.1519.

    Article  ADS  Google Scholar 

  44. J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986) DOI:10.1016/0550-3213(86)90340-8.

    Article  ADS  Google Scholar 

  45. P.W. Anderson, Phys. Rev. 130, 439 (1963) DOI:10.1103/PhysRev.130.439.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. H.D. White, K. McCain, J. Assoc. Inf. Sci. Technol. 49, 327 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, A., Marx, W., Bornmann, L. et al. On the origins and the historical roots of the Higgs boson research from a bibliometric perspective. Eur. Phys. J. Plus 129, 111 (2014). https://doi.org/10.1140/epjp/i2014-14111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14111-6

Keywords

Navigation