Skip to main content
Log in

Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An analytical study for the problem of mixed convection with thermal radiation and first-order chemical reaction on magnetohydrodynamics boundary layer flow of viscous, electrically conducting fluid past a vertical permeable surface embedded in a porous medium has been presented. Slip boundary condition is applied at the porous interface. The heat equation includes the terms involving the viscous dissipation, radiative heat flux, Ohmic dissipation, the internal absorption and absorption of radiation, whereas the mass transfer equation includes the effects of chemically reactive species of first order. The dimensionless governing equations for this investigation are formulated and the non-linear coupled differential equations are solved analytically using the perturbation technique. Comparisons with previously published work on special cases of the problem are performed and results are found to be in excellent agreement. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of magnetic field, thermal radiation, chemical reaction and Ohmic dissipation. It is observed that the effect of magnetic field, heat source and thermal radiation is to decrease the velocity, temperature profiles in the boundary layer. The effect of increasing the values of rarefaction parameter is to increase the velocity in the momentum boundary layer. Further, it is found that increasing the value of the chemical reaction decreases the concentration of species in the boundary layer. Also, the effects of the various parameters on the skin-friction coefficient, local Nusselt number and local Sherwood number at the surface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Chen, B.S. Armaly, Mixed Convection in External Flow (Wiley, 1987).

  2. I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (Oxford Pergamon Press, 2001).

  3. V.M. Soundalgekar et al., Nucl. Eng. Res. 53, 309 (1979).

    Google Scholar 

  4. E.M.A. Elbasheshy, Int. J. Eng. Sci. 34, 515 (1997).

    Article  Google Scholar 

  5. M. Gnaneswara Reddy, N. Bhaskar Reddy, J. Appl. Fluid Mech. 4, 7 (2011).

    Google Scholar 

  6. P.K. Sharma, R.C. Chaudhury, Emirates J. Eng. Sci. 8, 33 (2003).

    Google Scholar 

  7. T. Hayat et al., Acta Mech. 153, 133 (2002).

    Article  MATH  Google Scholar 

  8. R. Siegel, J.R. Howell, Thermal Radiation Transfer, 3rd edition (Hemisphere, 1992).

  9. M.F. Modest, Radiative Heat Transfer, 2nd edition (Academic Press, 2003).

  10. M.A. Hosssain, H.S. Takhar, Heat Mass Transfer 31, 243 (1996).

    Article  ADS  Google Scholar 

  11. M. Aboeldahab Emad, J. Phys. D. Appl. Phys. 33, 3180 (2000).

    Article  ADS  Google Scholar 

  12. E.M. Abo-Eldahab, M.S. Elgendy, Phys. Scr. 62, 321 (2000).

    Article  ADS  Google Scholar 

  13. M.A. Seddeek, Int. J. Heat Mass. Transfer 45, 931 (2002).

    Article  MATH  Google Scholar 

  14. O. Aydin, A. Kaya, Heat Mass Transfer 45, 239 (2008).

    Article  ADS  Google Scholar 

  15. M. Gnaneswara Reddy, Brit. J. Eng. Technol. 1, 17 (2012).

    Google Scholar 

  16. M. Gnaneswara Reddy, to be published in Ain Shams Eng. J. (2013).

  17. U.N. Das et al., Forsch. Ing. 60, 284 (1994).

    Article  Google Scholar 

  18. R. Kandasamy et al., Int. J. Heat Mass Transfer 48, 4557 (2005).

    Article  MATH  Google Scholar 

  19. C.H. Chen, Int. J. Eng. Sci 42, 699 (2004).

    Article  MATH  Google Scholar 

  20. A.Y. Ghaly, M.A. Seddeek, Chaos Solitons Fractals 19, 61 (2004).

    Article  ADS  MATH  Google Scholar 

  21. D. Pal, B. Talukdar, Commun. Nonlinear Sci. Numer. Simulat. 15, 1813 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. M. Gnaneswara Reddy, Ain Shams Eng. J. 4, 879 (2013).

    Article  Google Scholar 

  23. M.A. Hossain, Int. J. Heat Mass Transfer 35, 3485 (1992).

    Article  Google Scholar 

  24. E.M. Abo-Eldahab, M. Abd El-Aziz, Int. Commun. Heat Mass Transfer 31, 751 (2004).

    Article  Google Scholar 

  25. R.C. Chaudhary et al., Rom. J. Phys. 51, 715 (2006).

    Google Scholar 

  26. M. Abd El-Aziz, Meccanica. 42, 375 (2007).

    Article  MATH  Google Scholar 

  27. D. Pal, H. Mondal, Commun. Nonlinear Sci. Numer. Simulat. 15, 1553 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. A.C. Cogley et al., AIAA J. 6, 551 (1968).

    Article  ADS  Google Scholar 

  29. D. Pal, B. Talukdar, Commun. Nonlinear Sci. Numer. Simulat. 15, 2878 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machireddy Gnaneswara Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnaneswara Reddy, M. Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. Eur. Phys. J. Plus 129, 41 (2014). https://doi.org/10.1140/epjp/i2014-14041-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14041-3

Keywords

Navigation