Abstract.
In multi-level systems, the commonly used adiabatic elimination is a method for approximating the dynamics of the system by eliminating irrelevant, nonresonantly coupled levels. This procedure is, however, somewhat ambiguous and it is not clear how to improve on it systematically. We use an integro-differential equation for the probability amplitudes of the levels of interest, which is equivalent to the original Schrödinger equation for all probability amplitudes. In conjunction with a Markov approximation, the integro-differential equation is then used to generate a hierarchy of approximations, in which the zeroth order is the adiabatic-elimination approximation. It works well with a proper choice of interaction picture; the procedure suggests criteria for optimizing this choice. The first-order approximation in the hierarchy provides significant improvements over standard adiabatic elimination, without much increase in complexity, and is furthermore not so sensitive to the choice of interaction picture. We illustrate these points with several examples.
This is a preview of subscription content,
to check access.References
C. Cohen-Tannoudji, D. Guéry-Odelin, Advances in Atomic Physics: An Overview (World Scientific, 2011)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)
M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)
E. Kyrölä, M. Lindberg, Opt. Commun. 48, 284 (1983)
E. Kyrölä, M. Lindberg, Phys. Rev. A 35, 4207 (1987)
B.W. Shore, The Theory of Coherent Atomic Excitation, Vol. 2, Multilevel Atoms and Incoherence (Wiley-Interscience, 1990)
A. Sinatra, F. Castelli, L.A. Lugiato, P. Grangier, J.P. Poizat, Quantum Semiclass. Opt. 7, 405 (1995)
E. Brion, L.H. Pedersen, K. Mølmer, J. Phys. A: Math. Theor. 40, 1033 (2007)
B.W. Shore, Acta Phys. Slov. 58, 243 (2008)
B.T. Torosov, N.V. Vitanov, Phys. Rev. A 79, 042108 (2009)
B.T. Torosov, N.V. Vitanov, J. Phys. B: At. Mol. Opt. Phys. 45, 135502 (2012)
H. Haken, Synergetics: Introduction and Advanced Topics (Springer, 1983)
C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Process and Applications (Wiley-VCH, 2004)
T.F. Gallagher, Rydberg Atoms (Cambridge University Press, 2005)
R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Phys. Rev. Lett. 99, 163601 (2007)
D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Coté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)
E. Brion, L.H. Pedersen, K. Mølmer, J. Phys. B: At. Mol. Opt. Phys. 40, 159 (2007)
J. Oreg, F.T. Hioe, J.H. Eberly, Phys. Rev. A 29, 690 (1984)
J.R. Kuklinski, U. Gaubatz, F.T. Hioe, K. Bergmann, Phys. Rev. A 40, 6741 (1989)
R. Han, H.K. Ng, B.-G. Englert, J. Mod. Opt. 60, 255 (2013)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Paulisch, V., Rui, H., Ng, H.K. et al. Beyond adiabatic elimination: A hierarchy of approximations for multi-photon processes. Eur. Phys. J. Plus 129, 12 (2014). https://doi.org/10.1140/epjp/i2014-14012-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2014-14012-8