Skip to main content
Log in

Molecular spinless energies of the improved Tietz potential energy model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We solve the Klein-Gordon equation with the improved Tietz empirical potential energy model. The bound state energy equation has been obtained by using the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the \(C^{1}\Pi_{u}\) state of Na2 molecule have been computed by using the improved Tietz potential model. The relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Wang, C.Y. Wong, Phys. Rev. D 38, 348 (1988)

    Article  ADS  Google Scholar 

  2. A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Phys. Lett. A 349, 87 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Adv. High Energy Phys. 2011, 458087 (2011)

    Article  MathSciNet  Google Scholar 

  4. H. Sun, Bull. Korean Chem. Soc. 32, 4233 (2011)

    Article  Google Scholar 

  5. O. Bayrak, A. Soylu, I. Boztosun, J. Math. Phys. 51, 112301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. L.Z. Yi, Y.F. Diao, J.Y. Liu, C.S. Jia, Phys. Lett. A 333, 212 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. Soylu, O. Bayrak, I. Boztosun, Chin. Phys. Lett. 25, 2574 (2008)

    Article  Google Scholar 

  8. T.T. Ibrahim, K.J. Oyewumi, S.M. Wyngaardt, Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  9. W.C. Qiang, G.H. Sun, S.H. Dong, Ann. Phys. (Berlin) 524, 360 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. G.F. Wei, Z.Z. Zhen, S.H. Dong, Cent. Eur. J. Phys. 7, 175 (2009)

    Article  Google Scholar 

  11. S.H. Dong, Commun. Theor. Phys. 55, 969 (2011)

    Article  ADS  MATH  Google Scholar 

  12. O.J. Oluwadare, K.J. Oyewumi, C.O. Akoshile, O.A. Babalola, Phys. Scr. 86, 035002 (2012)

    Article  ADS  Google Scholar 

  13. W.C. Qiang, S.H. Dong, Phys. Lett. A 372, 4789 (2008)

    Article  ADS  MATH  Google Scholar 

  14. G. Koçak, F. Taskin, Ann. Phys. (Berlin) 522, 802 (2010)

    Article  ADS  Google Scholar 

  15. Y. Xu, S. He, C.S. Jia, Phys. Scr. 81, 045001 (2010)

    Article  ADS  Google Scholar 

  16. C.S. Jia, T. Chen, S. He, Phys. Lett. A 377, 682 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Chen, S.R. Lin, C.S. Jia, Eur. Phys. J. Plus 128, 69 (2013)

    Article  Google Scholar 

  18. T. Tietz, J. Chem. Phys. 38, 3036 (1963)

    Article  ADS  Google Scholar 

  19. R.T. Pack, J. Chem. Phys. 57, 4612 (1972)

    Article  ADS  Google Scholar 

  20. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  MATH  Google Scholar 

  21. J.N. Murrell, K.S. Sorbie, J. Chem. Soc. Faraday Trans. 2, 70, 1552 (1974)

    Google Scholar 

  22. A.T. Royappa, V. Suri, J.R. McDonough, J. Mol. Struct. 787, 209 (2006)

    Article  ADS  Google Scholar 

  23. R. Rydberg, Z. Phys. 80, 514 (1933)

    Article  ADS  Google Scholar 

  24. O. Klein, Z. Phys. 76, 226 (1932)

    Article  ADS  MATH  Google Scholar 

  25. A.L.G. Rees, Proc. Phys. Soc. 59, 998 (1947)

    Article  ADS  MATH  Google Scholar 

  26. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)

    Article  ADS  Google Scholar 

  27. N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)

    Article  ADS  Google Scholar 

  28. M.F. Manning, N. Rosen, Phys. Rev. 44, 953 (1933)

    Google Scholar 

  29. H. Wei, Phys. Rev. A 42, 2524 (1990)

    Article  ADS  Google Scholar 

  30. H. Eğrifes, D. Demirhan, F. Büyükkilic, Phys. Scr. 60, 195 (1999)

    Article  ADS  MATH  Google Scholar 

  31. H. Eğrifes, D. Demirhan, F. Büyükkilic, Phys. Lett. A 275, 229 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. J.X. Sun, Acta Phys. Sin. 48, 1992 (1999)

    Google Scholar 

  33. Y. Sun, S. He, C.S. Jia, Phys. Scr. 87, 025301 (2013)

    Article  ADS  Google Scholar 

  34. C.S. Jia, T. Chen, L.Z. Yi, S.R. Lin, J. Math. Chem. 51, 2165 (2013)

    Article  MathSciNet  Google Scholar 

  35. X.T. Hu, J.Y. Liu, C.S. Jia, Comput. Theor. Chem. 1019, 137 (2013)

    Article  Google Scholar 

  36. G.C. Liang, H.M. Tang, C.S. Jia, Comput. Theor. Chem. 1020, 170 (2013)

    Article  Google Scholar 

  37. G.A. Natanson, Phys. Rev. A 44, 3377 (1991)

    Article  ADS  Google Scholar 

  38. J.A. Kunc, F.J. Gordillo-Vázquez, J. Phys. Chem. A 101, 1595 (1997)

    Article  Google Scholar 

  39. G.H. Sun, S.H. Dong, Commun. Theor. Phys. 58, 195 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  41. M. Badawi, N. Bessis, G. Bessis, J. Phys. B: At. Molec. Phys. 5, 1470 (1972)

    Article  ADS  Google Scholar 

  42. M. Badawi, N. Bessis, G. Bessis, J. Phys. B: At. Molec. Phys. 5, L157 (1972)

    Article  ADS  Google Scholar 

  43. G.F. Wei, S.H. Dong, Eur. Phys. J. A 46, 207 (2010)

    Article  ADS  Google Scholar 

  44. F. Cooper, B. Freedman, Ann. Phys. 146, 262 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  45. L.E. Gendenshtein, Sov. Phys. JETP Lett. 38, 356 (1983)

    ADS  Google Scholar 

  46. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  47. J.W. Dabrowska, A. Khare, U.P. Sukhatme, J. Phys. A: Math. Gen. 21, L195 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  48. C.S. Jia, X.G. Wang, X.K. Yao, P.C. Chen, W. Xiao, J. Phys. A: Math. Gen. 31, 4763 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. J.L. Dunham, Phys. Rev. 41, 721 (1932)

    Article  ADS  Google Scholar 

  50. W. Jastrzebski, P. Kowalczyk, J.J. Camacho, A. Pardo, J.M.L. Poyato, Spectrochim. Acta Part A 57, 1829 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JY., Du, JF. & Jia, CS. Molecular spinless energies of the improved Tietz potential energy model. Eur. Phys. J. Plus 128, 139 (2013). https://doi.org/10.1140/epjp/i2013-13139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13139-4

Keywords

Navigation