Skip to main content
Log in

Ballistic quantum state transfer in spin chains: General theory for quasi-free models and arbitrary initial states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ballistic quantum information transfer through spin chains is based on the idea of making the spin dynamics ruled by collective excitations with linear dispersion relation. Unlike perfect state transfer schemes, a ballistic transmission requires only a minimal engineering of the interactions; in fact, for most practical purposes, the optimization of the couplings to the ends of the chain is sufficient to obtain an almost perfect transmission. In this work we review different ballistic quantum state transfer protocols based on the dynamics of quasi-free spin chains, and further generalize them both at zero and finite temperature. In particular, besides presenting novel analytical results for XX, XY, and Ising spin models, it is shown how, via a complete control on the first and last two qubits of the chain, destructive thermal effects can be cancelled, leading to a high-quality state transmission irrespective of the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Nature 456, 218 (2008)

    Article  ADS  Google Scholar 

  2. C. Weitenberg, M. Endres, J. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  3. I. Chiorescu, Y. Nakamura, C.M. Harmans, J. Mooij, Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  4. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  5. L.M. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  6. S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  7. S. Bose, Contemp. Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  8. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, 2005)

  9. A. Bayat, S. Bose, Phys. Rev. A 81, 012304 (2010)

    Article  ADS  Google Scholar 

  10. A. Bayat, L. Banchi, S. Bose, P. Verrucchi, Phys. Rev. A 83, 062328 (2011)

    Article  ADS  Google Scholar 

  11. M. Christandl, N. Datta, A. Ekert, A. Landahl, Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  12. A. Kay, Int. J. Quantum Inform. 08, 641 (2010) DOI:10.1142/S0219749910006514

    Article  Google Scholar 

  13. C. Di Franco, M. Paternostro, M. Kim, Phys. Rev. Lett. 101, 230502 (2008)

    Article  ADS  Google Scholar 

  14. R. Heule, C. Bruder, D. Burgarth, V.M. Stojanović, Phys. Rev. A 82, 052333 (2010)

    Article  ADS  Google Scholar 

  15. H. Haselgrove, Phys. Rev. A 72, 062326 (2005)

    Article  ADS  Google Scholar 

  16. A. Wójcik, T. Luczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 72, 034303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Wójcik, T. Luczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 75, 022330 (2007)

    Article  ADS  Google Scholar 

  18. N.Y. Yao, L. Jiang, A.V. Gorshkov, Z.X. Gong, A. Zhai, L.M. Duan, M.D. Lukin, arXiv:1011.2762 (2010)

  19. S. Lorenzo, T. Apollaro, A. Sindona, F. Plastina, Phys. Rev. A 87, 042313 (2013)

    Article  ADS  Google Scholar 

  20. S. Paganelli, S. Lorenzo, T.J. Apollaro, F. Plastina, G.L. Giorgi, Phys. Rev. A 87, 062309 (2013)

    Article  ADS  Google Scholar 

  21. L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, Phys. Rev. A 82, 052321 (2010)

    Article  ADS  Google Scholar 

  22. L. Banchi, T. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, New J. Phys. 13, 123006 (2011)

    Article  ADS  Google Scholar 

  23. L. Banchi, T. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, Nanomater. Nanotechnol. 1, 24 (2011)

    Google Scholar 

  24. T. Apollaro, L. Banchi, A. Cuccoli, R. Vaia, P. Verrucchi, Phys. Rev. A 85, 052319 (2012)

    Article  ADS  Google Scholar 

  25. T.J. Apollaro, S. Lorenzo, F. Plastina, Int. J. Mod. Phys. B 27, 1345035 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

  27. A. Fujiwara, P. Algoet, Phys. Rev. A 59, 3290 (1999)

    Article  ADS  Google Scholar 

  28. R. Horodecki, M. Horodecki, Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Bowen, S. Bose, Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  30. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. D. Kretschmann, R.F. Werner, New J. Phys. 6, 26 (2004)

    Article  ADS  Google Scholar 

  32. A. Koetsier, R.A. Duine, I. Bloch, H.T.C. Stoof, Phys. Rev. A 77, 023623 (2008)

    Article  ADS  Google Scholar 

  33. P. Barmettler, A.M. Rey, E. Demler, M.D. Lukin, I. Bloch, V. Gritsev, Phys. Rev. A 78, 012330 (2008)

    Article  ADS  Google Scholar 

  34. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  36. C. Albanese, M. Christandl, N. Datta, A. Ekert, Phys. Rev. Lett. 93, 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Yung, S. Bose, Phys. Rev. A 71, 032310 (2005)

    Article  ADS  Google Scholar 

  38. L. Banchi, A. Bayat, P. Verrucchi, S. Bose, Phys. Rev. Lett. 106, 140501 (2011)

    Article  ADS  Google Scholar 

  39. A. Cantoni, P. Butler, Linear Algebra Appl. 13, 275 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  40. B.N. Parlett, The Symmetric Eigenvalue Problem (SIAM, Philadelphia, 1998)

  41. M. Bruderer, K. Franke, S. Ragg, W. Belzig, D. Obreschkow, Phys. Rev. A 85, 022312 (2012)

    Article  ADS  Google Scholar 

  42. C. Albanese, M. Christandl, N. Datta, A. Ekert, Phys. Rev. Lett. 93, 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. L. Banchi, R. Vaia, J. Math. Phys. 54, 043501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. T.J. Osborne, N. Linden, Phys. Rev. A 69, 052315 (2004)

    Article  ADS  Google Scholar 

  45. H.L. Haselgrove, Phys. Rev. A 72, 062326 (2005)

    Article  ADS  Google Scholar 

  46. L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, Phys. Rev. Lett. 99, 060401 (2007)

    Article  ADS  Google Scholar 

  47. C. Di Franco, M. Paternostro, D. Tsomokos, S. Huelga, Phys. Rev. A 77, 062337 (2008)

    Article  ADS  Google Scholar 

  48. M. Markiewicz, M. Wieśniak, Phys. Rev. A 79, 054304 (2009)

    Article  ADS  Google Scholar 

  49. N.Y. Yao, Z.X. Gong, C.R. Laumann, S.D. Bennett, L.M. Duan, M.D. Lukin, L. Jiang, A.V. Gorshkov, Phys. Rev. A 87, 022306 (2013)

    Article  ADS  Google Scholar 

  50. P. Cappellaro, L. Viola, C. Ramanathan, Phys. Rev. A 83, 032304 (2011)

    Article  ADS  Google Scholar 

  51. A. Ajoy, P. Cappellaro, Phys. Rev. A 85, 042305 (2012)

    Article  ADS  Google Scholar 

  52. P. Badziag, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 62, 012311 (2000)

    Article  ADS  Google Scholar 

  53. A. Zwick, G. Álvarez, J. Stolze, O. Osenda, Phys. Rev. A 85, 012318 (2012) DOI:10.1103/PhysRevA.85.012318

    Article  ADS  Google Scholar 

  54. A. Zwick, G.A. Álvarez, J. Stolze, O. Osenda, arXiv:1306.1695 (2013)

  55. N.Y. Yao, L. Jiang, A.V. Gorshkov, P.C. Maurer, G. Giedke, J.I. Cirac, M.D. Lukin, Nature Commun. 3, 800 (2012)

    Article  ADS  Google Scholar 

  56. Y. Ping, B.W. Lovett, S.C. Benjamin, E.M. Gauger, Phys. Rev. Lett. 110, 100503 (2013)

    Article  ADS  Google Scholar 

  57. W. Bakr, J. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  58. G.K. Brennen, C.M. Caves, P.S. Jessen, I.H. Deutsch, Phys. Rev. Lett. 82, 1060 (1999)

    Article  ADS  Google Scholar 

  59. O. Mandel, M. Greiner, A. Widera, T. Rom, T. Hänsch, I. Bloch, Nature 425, 937 (2003) DOI:10.1038/nature02008

    Article  ADS  Google Scholar 

  60. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  61. J. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  62. W. Bakr, A. Peng, M. Tai, R. Ma, J. Simon, J. Gillen, S. Foelling, L. Pollet, M. Greiner, Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  63. M. Karski, L. Förster, J. Choi, A. Steffen, N. Belmechri, W. Alt, D. Meschede, A. Widera, New J. Phys. 12, 065027 (2010)

    Article  ADS  Google Scholar 

  64. P. Cappellaro, C. Ramanathan, D. Cory, Phys. Rev. Lett. 99, 250506 (2007)

    Article  ADS  Google Scholar 

  65. C. Ramanathan, P. Cappellaro, L. Viola, D. Cory, New J. Phys. 13, 103015 (2011)

    Article  ADS  Google Scholar 

  66. A. Ajoy, R.K. Rao, A. Kumar, P. Rungta, Phys. Rev. A 85, 030303 (2012)

    Article  ADS  Google Scholar 

  67. K.R.K. Rao, A. Kumar, Int. J. Quantum Inform. 10, 1250039 (2012)

    Article  Google Scholar 

  68. F. Plastina, T.J.G. Apollaro, Phys. Rev. Lett. 99, 177210 (2007)

    Article  ADS  Google Scholar 

  69. G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  70. S.I. Doronin, A.I. Zenchuk, Phys. Rev. A 81, 022321 (2010)

    Article  ADS  Google Scholar 

  71. J. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, 1986) ISBN 9780262022149

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banchi, L. Ballistic quantum state transfer in spin chains: General theory for quasi-free models and arbitrary initial states. Eur. Phys. J. Plus 128, 137 (2013). https://doi.org/10.1140/epjp/i2013-13137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13137-6

Keywords

Navigation