Skip to main content
Log in

Ab initio investigation of spin-filter effects in GaN nanowires with transitional metal impurities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The spin transport properties in gallium nitride nanowires with transitional metal impurities are investigated using first principles calculations. We focus on the spin-filter effects, which arise by introducing one or two substitutional magnetic impurities. Performing constrained spin density functional calculations we analyze both ferro- and antiferro-magnetic configurations. The spin-dependent transmission functions are calculated using the non-equilibrium Green’s functions formalism. The contribution of the surface states to the spin transport is pointed out, with a particular emphasis on their role in reducing the wide band gap of the III-V semiconductor. Different transitional metal impurities are introduced and the spin separation is evaluated. The feasibility of using GaN nanowires in realistic applications is further analyzed, by attaching Al(111) nanoscopic contacts. The obtained polarization of the spin current reveals the suitability of the considered structures in viable spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  2. W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Nano Lett. 10, 3355 (2010).

    Article  ADS  Google Scholar 

  3. H.P.T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G.A. Botton, Z. Mi, Nano Lett. 11, 1919 (2011).

    Article  ADS  Google Scholar 

  4. C. Xu, L. Xue, C. Yin, G. Wang, Phys. Stat. Solidi A 198, 329 (2003).

    Article  ADS  Google Scholar 

  5. Y.B. Tang, H.T. Cong, Z.G. Zhao, H.M. Cheng, Appl. Phys. Lett. 86, 153104 (2005).

    Article  ADS  Google Scholar 

  6. S. Chattopadhyay, S.C. Shi, Z.H. Lan, C.F. Chen, K.H. Chen, L.C. Chen, J. Am. Chem. Soc. 127, 2820 (2005).

    Article  Google Scholar 

  7. Z. Zhou, J. Zhao, Y. Chen, P. von Ragu Schleyer, Z. Chen, Nanotechnology 18, 424023 (2007).

    Article  ADS  Google Scholar 

  8. Doo Suk Han, Jeunghee Park, Kung Won Rhie, Soonkyu Kim, Joonyeon Chang, Appl. Phys. Lett. 86, 032506 (2005).

    Article  Google Scholar 

  9. Shokouh S. Farvid, Manu Hegde, Ian D. Hosein, Pavle V. Radovanovic, Appl. Phys. Lett. 99, 222504 (2011).

    Article  ADS  Google Scholar 

  10. Hyun Kum, Junseok Heo, Shafat Jahangir, Animesh Banerjee, Wei Guo, Pallab Bhattacharya, Appl. Phys. Lett. 100, 182407 (2012).

    Article  ADS  Google Scholar 

  11. Andris Gulans, Ivars Tale, Phys. Stat. Solidi C 4, 1197 (2007).

    Article  Google Scholar 

  12. Zhiguo Wang, Jingbo Li, Fei Gao, William J. Weber, J. Appl. Phys. 108, 044305 (2010).

    Article  ADS  Google Scholar 

  13. P. Dev, H. Zeng, P. Zhang, Phys. Rev. B 82, 165319 (2010).

    Article  ADS  Google Scholar 

  14. R. Agrawal, H.D. Espinosa, Nano Lett. 11, 786 (2011).

    Article  ADS  Google Scholar 

  15. Damien J Carter, Martin Fuchs, Catherine Stampfl, J. Phys.: Condens. Matter 24, 255801 (2012).

    ADS  Google Scholar 

  16. J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Article  ADS  Google Scholar 

  17. P. Ordejon, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1995).

    Article  ADS  Google Scholar 

  18. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  19. Q.Z. Liu, S.S. Lau, Solid-State Electr. 42, 677 (1998).

    Article  ADS  Google Scholar 

  20. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  ADS  Google Scholar 

  21. G.A. Nemnes, J. Nanomater. 2012, 748639 (2012).

    Article  Google Scholar 

  22. G.A. Nemnes, J. Nanomater. 2013, 408475 (2013).

    Article  Google Scholar 

  23. G.A. Nemnes, S. Antohe, Mater. Sci. Eng. B 178, 1347 (2013).

    Article  Google Scholar 

  24. G.A. Nemnes, C. Visan, S. Antohe, Physica E 44, 1092 (2012).

    Article  ADS  Google Scholar 

  25. G.A. Nemnes, Camelia Visan, T.L. Mitran, Adela Nicolaev, L. Ion, S. Antohe, Enhanced thermopower of GaN nanowires with transitional metal impurities, in MRS Proceedings, Vol. 1543 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nemnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemnes, G.A., Visan, C. Ab initio investigation of spin-filter effects in GaN nanowires with transitional metal impurities. Eur. Phys. J. Plus 128, 131 (2013). https://doi.org/10.1140/epjp/i2013-13131-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13131-0

Keywords

Navigation