Origin of the tail in Green’s functions in odd-dimensional space-times

Regular Article


It is well known that the scalar field Green’s function in odd dimensions has a tail, i.e. a non-zero support inside the light cone, which in turn implies that the Huygens’ principle is violated. However, the reason behind this behavior is still not quite clear. In this paper we shed more light on the physical origin of the tail by regularizing the term which is usually ignored in the literature since it vanishes due to the action of the delta function. With this extra term the Green’s function does not satisfy the source-free wave equation (in the region outside of the source). We show that this term corresponds to a charge imprinted on the light-cone shell. Unlike the vector field charge, a moving scalar field charge is not Lorentz invariant and is contracted by a \(\sqrt {1 - v^2 }\) factor. If a scalar charge is moving at the speed of light, it appears to be zero in the static (with respect to the original physical charge) observer’s frame. However, the field it sources is not entirely on the light cone. Thus, it is likely that this hidden charge sources the mysterious tail in odd dimensions.


Huygens Total Charge Light Cone Scalar Charge Lorentz Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Huygens, Traité de la Lumière (Leyden, 1690).Google Scholar
  2. 2.
    J. Hadamard, Lectures on Cauchy’s Problem (Yale University Press, New Haven, 1923) and Problème de Cauchy (Paris, 1932).Google Scholar
  3. 3.
    P. Ehrenfest, Versl. Gewone Vergad. Afd. Natuurkd. K. Ned. Akad. Wet. 26, 105 (1917).MATHGoogle Scholar
  4. 4.
    P. Ehrenfest, Ann. Phys. (Leipzig) 61, 440 (1920).ADSCrossRefMATHGoogle Scholar
  5. 5.
    D.-C. Dai, D. Stojkovic, Phys. Rev. D 86, 084034 (2012) arXiv:1209.3779 [hep-th].ADSCrossRefGoogle Scholar
  6. 6.
    Y. Murakami, Prog. Theor. Phys. 109, 61 (2003) hep-th/0210039.ADSCrossRefMATHGoogle Scholar
  7. 7.
    R.R. Caldwell, Phys. Rev. D 48, 4688 (1993) gr-qc/9309025.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.P. Dahl, D.M. Greenberger, M.J.W. Hall, G. Sussmann, A. Wolf, W.P. Schleich, Laser Physics 15, 18 (2005).Google Scholar
  9. 9.
    E. Poisson, Liv. Rev. Rel. 7, 6 (2004) gr-qc/0306052.Google Scholar
  10. 10.
    V.P. Frolov, M. Snajdr, D. Stojkovic, Phys. Rev. D 68, 044002 (2003) gr-qc/0304083.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Harry Soodak, Martin S. Tiersten, Am. J. Phys. 61, 395 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    E.G. Adelberger, B.R. Heckel, C.W. Stubbs, W.F. Rogers, Annu. Rev. Nucl. Part. Sci. 41, 269 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    H. Ren, E.J. Weinberg, Phys. Rev. D 49, 6526 (1994) hep-th/9312038.ADSCrossRefGoogle Scholar
  14. 14.
    S. Hassani, Mathematical Physics: A Modern Introduction to Its Foundations (Springer, 1999) p. 635 and problem 22.26.Google Scholar
  15. 15.
    J.D. Jackson, Classical electrodynamics, 3rd edition (Wiley, New York, 1975) problem 6.1.Google Scholar
  16. 16.
    I. Aharonovich, L.P. Horwitz, J. Math. Phys. 47, 122902 (2006) arXiv:math-ph/0603081.MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Andrei D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (Chapman & Hall/CRC, 2002).Google Scholar
  18. 18.
    V.S. Vladimirov, Mathematical Physics Equations (Nauka, Moscow, 1988) (in Russian).Google Scholar
  19. 19.
    T. Tanaka, Prog. Theor. Phys. Suppl. 148, 307 (2003) gr-qc/0203082.ADSCrossRefGoogle Scholar
  20. 20.
    R. Emparan, A. Fabbri, N. Kaloper, JHEP 08, 043 (2002) hep-th/0206155.MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P. Figueras, T. Wiseman, Phys. Rev. Lett. 107, 081101 (2011) arXiv:1105.2558 [hep-th].ADSCrossRefGoogle Scholar
  22. 22.
    Shohreh Abdolrahimi, Céline Cattoën, Don N. Page, Shima Yaghoobpour-Tari, JCAP 06, 039 (2013) arXiv:1212.5623 [hep-th].ADSCrossRefGoogle Scholar
  23. 23.
    D.-C. Dai, D. Stojkovic, Phys. Lett. B 704, 354 (2011) arXiv:1004.3291 [gr-qc].ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Natural Sciences and INPAC, Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.HEPCOS, Department of PhysicsSUNY at BuffaloBuffaloUSA

Personalised recommendations