Advertisement

Could we treat the Regge-Wheeler equation in an easier way?

  • H. Hassanabadi
  • S. Zarrinkamar
  • A. A. Rajabi
Regular Article
  • 162 Downloads

Abstract

Finding solutions of the Regge-Wheeler equation is in many cases the first step in the study of Schwarzschild black holes and modern perturbation theory as well as many other fields. Here, a quasi-exact analytical solution of the radial Regge-Wheeler equation is reported via a proposed ansatz after elegant transformations.

Keywords

Black Hole Gravitational Wave Heun Function Axial Perturbation Linear Algebra Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957)MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Chandrasekhar, The Mathematical Theory of Black Holes, (Oxford University Press, Oxford, 1983)Google Scholar
  3. 3.
    F. Zerilli, Phys. Rev. Lett. 24, 737 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    V. Moncrief, Phys. Rev. D 10, 1057 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    U.H. Gerlach, Phys. Rev. D 38, 514 (1988)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J.R. Ipser, R.H. Price, Phys. Rev. D 43, 1768 (1991)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    E. Poisson, Phys. Rev. D 47, 1497 (1993)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    F.I. Cooperstock, V. Faraoni, G.P. Perry, Int. J. Mod. Phys. D 5, 375 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    V. Ferrari, L. Gualtieri, Int. J. Mod. Phys. D 6, 323 (1997)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    N. Andersson et al., Phys. Rev. D 60, 124004 (1999)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    J. Ruoff, Phys. Rev. D 63, 064018 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    O. Sarbach, M. Heusler, O. Brodbeck, Phys. Rev. D 63, 104015 (2001)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    L. Barack, O. Amos, Phys. Rev. D 64, 124003 (2001)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R.J. Gleiser, A.E. Dominguez, Phys. Rev. D 65, 064018 (2002)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A. Stavridis, K.D. Kokkotas, Int. J. Mod. Phys. D 14, 543 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Tanimoto, V. Moncrief, K. Yasuni, Class. Quantum Grav. 20, 1879 (2003)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Kodama, A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    V. Ferrari, L. Gualtieri, L. Rezzolla, Phys. Rev. D 73, 124028 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    P. Boonserm, M. Visser, Phys. Rev. D 78, 101502 (2008)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    T. Moon, Y.S. Myung, Phys. Rev. D 84, 104029 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Óhaughnessy et al., Astrophys. J. 633, 1076 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    P.P. Fiziev, Class. Quantum Grav. 23, 2447 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    P.P. Fiziev, J. Phys. C Conf. Ser. 66, 012016 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    P.P. Fiziev, Phys. Rev. D 80, 124001 (2009)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    P.P. Fiziev, Class. Quantum Grav. 27, 135001 (2010)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    P.P. Fiziev, J. Phys. A Math. Gen. 43, 035203 (2010)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P.P. Fiziev, D. Staicova, Phys. Rev. D 84, 127502 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Sasaki, Prog. Theor. Phys. 92, 17 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mano, H. Suzuki, E. Takasugi, Prog. Theor. Phys. 96, 549 (1996)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    J.F.Q. Fernandes, A.W.C. Lun, Proceedings of the Seventh Marcel Grossman Meeting on recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, in Proceedings of the Meeting held at Stanford University, 24-30 July 1994, edited by Robert T. Jantzen, G. Mac Keiser, Remo Ruffini (World Scientific, River Edge, NJ, 1996) p. 564Google Scholar
  31. 31.
    O. Brodbeck, M. Heusler, O. Sarbach, Phys. Rev. Lett. 84, 3033 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. 32.
    G. Cruciani, Nuovo Cimento B 115, 070809 (2000)MathSciNetGoogle Scholar
  33. 33.
    A.D.A.M. Spallicci, Analytic Solution of Regge-Wheeler Differential Equation for Black Hole Perturbations in Radial Coordinate and Time Domains, in Recent Developments in General Relativity, edited by B. Casciaro, D. Fortunato, M. Francaviglia, A. Masiello (Springer-Verlag, Italy, 2000) p. 373, QC173.6 .R44 2000, ISBN 88-470-0068-8Google Scholar
  34. 34.
    A.M. Van den Brink, J. Math. Phys. 45, 327 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    P. Blue, A. Soffer, J. Math. Phys. 46, 012502 (2005)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G. Tian, Sh. Wang, Zh. Zheng, arXiv:gr-qc/0509030 (2005)
  37. 37.
    S. Musiri, G. Siopsis, Phys. Lett. B 650, 279 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  38. 38.
    R.B. Burston, A.W.C. Lun, Class. Quantum Grav. 25, 075003 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    S.H. Dong, Int. J. Theor. Phys. 40, 569 (2001)CrossRefzbMATHGoogle Scholar
  40. 40.
    D. Agboola, Y. Zhang, J. Math. Phys. 53, 042101 (2012)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    S. Hassanabadi, A.A. Rajabi, S. Zarrinkamar, Mod. Phys. Lett. A 27, 1250057 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi, Phys. Rev. C 84, 064003 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    H. Hassanabadi, A.A. Rajabi, Few-Body Sys. 41, 201 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    S.H. Dong, Int. J. Theor. Phys. 40, 569 (2001)CrossRefzbMATHGoogle Scholar
  45. 45.
    S.H. Dong, Wave Equations in Higher Dimensions (Springer, Netherlands, 2011)Google Scholar
  46. 46.
    S. Zarrinkamar, H. Hassanabadi, A.A. Rajabi, Astrophys. Space Sci. 344, 1 (2013)ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    S. Zarrinkamar, H. Hassanabadi, A.A. Rajabi, Astrophys. Space Sci. 343, 391 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physics DepartmentShahrood University of TechnologyShahroodIran
  2. 2.Department of Basic Sciences, Garmsar BranchIslamic Azad UniversityGarmsarIran

Personalised recommendations