Skip to main content
Log in

Formulation of spin-1 fields in deformed space-time with minimal length based on Quesne-Thachuk algebra

A raw estimate on minimal length

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quesne-Thachuk algebra is a relativistic deformed algebra which leads to a nonzero minimal length. We present the formulation of the Duffin-Kemmer-Petiau field in 1 + 1 space-time based on Quesne-Thachuk algebra. It is shown that a modified field with two effective masses appears in theory. One heavy ghost mass which diverges as deformation of space-time vanishes and one regular mass that reduces to usual mass in this limit. To avoid dealing with particles of complex energy as well as complex mass, we found that the deformation parameter has to be below the threshold value: \( \beta=1/m^{2}\) , where m is the mass of field particle. This relation provided us with a bound for applicability of deformed Quesne-Thachuk algebra for the Duffin-Kemmer-Petiau theory. Based on our analysis by using the mass data of spin-1 mesons, the upper bound \( 10^{-7}\) - \( 10^{-9}\) MeV^-2 was found for the deformation parameter. On the other hand, this bound for the deformation parameter leads to a minimal length of order \( 10^{-16}\) - \( 10^{-17}\) m, which is compatible with recent experimental data. Also, we introduce a modified propagator for the generalized Duffin-Kemmer-Petiau field playing the role of usual propagator in ordinary quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Calmet, M. Graesser, S.D.H. Hsu, Phys. Rev. Lett. 93, 211101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Nozari, Chaos, Solitons Fractals 32, 302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. K. Nozari, B. Fazlpour, Chaos, Solitons Fractals 34, 224 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. K. Nozari, T. Azizi, Gen. Relativ. Gravit. 38, 735 (2006) arXiv:gr-gc/0504090v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. Nozari, M. Karami, Mod. Phys. Lett. A 20, 3095 (2005) arXiv:hep-th/0507028v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M. Merad, F. Zeroual, H. Benzair, Elect. J. Theor. Phys. 7, 5 (2010)

    Google Scholar 

  7. G. Veneziano, Europhys. Lett. 2, 199 (1986)

    Article  ADS  Google Scholar 

  8. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  9. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197, 81 (1987)

    Article  ADS  Google Scholar 

  10. D. Amati, M. Ciafaloni, G. Veneziano, Int. J. Mod. Phys. A 3, 1615 (1988)

    Article  ADS  Google Scholar 

  11. S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 39, 15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.R Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) arXiv:hep-th/0106048

    Article  ADS  MATH  Google Scholar 

  13. F. Girelli, E.R. Livine, D. Oriti, Nucl. Phys. B 708, 411 (2005) arXiv:gr-gc/0406100

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Connet, M.R. Douglas, A. Schwartz, JHEP 02, 003 (1998) arXiv:hep-th/9711162

    Article  ADS  Google Scholar 

  15. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  16. A. Perez, Class. Quantum Grav. 20, R43 (2003) arXiv:gr-gc/0301113

    Article  ADS  MATH  Google Scholar 

  17. A. Ashtekar, J. Lewandowski, Class. Quantum Grav. 21, R53 (2004) arXiv:gr-gc/0404018

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. F. Scardigli, R. Casadio, Class. Quantum Grav. 20, 3915 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. F. Scardigli, Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  20. T. Padamanabhan, T.R. Seshadri, T.P. Singh, Int. J. Mod. Phys. A 1, 491 (1986)

    Article  ADS  Google Scholar 

  21. F. Brau, F. Buisseret, J. Phys. Rev. D 74, 036002 (2006) arXiv:hep-th/0605183v1

    Article  ADS  Google Scholar 

  22. A. Kempf, J. Phys. A 30, 2093 (1997) arXiv:hep-th/96040045v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Kempf, J. Phys. A 38, 1347 (1997)

    MathSciNet  MATH  Google Scholar 

  24. C. Quesne, V.M. Thachuk, J. Phys. A 38, (2005) arXiv:math-ph/0412052

  25. C. Quesne, V.M. Thachuk, J. Phys. A 39, 10909 (2006) arXiv:quant-ph/0604118

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. C. Quesne, V.M. Thachuk, Czech. J. Phys. 56, 1269 (2006) arXiv:quant-ph/0612093

    Article  ADS  MATH  Google Scholar 

  27. S.K. Moayedi, M.R. Setare, H. Moayeri, Int. J. Theor. Phys. 49, 2080 (2010) arXiv:hep-th/1004.0563v1

    Article  MATH  Google Scholar 

  28. S.K. Moayedi, M.R. Setare, H. Moayeri, Int. J. Mod. Phys. A 26, 4981 (2011) arXiv:hep-th/11051900v1

    Article  ADS  MATH  Google Scholar 

  29. W. Greiner, Relativistic Quantum Mechanics, 3rd edition (Springer, Berlin, 2000) p. 363

  30. B. Mirza, R. Narimani, M. Zarei, Eur. Phys. J. C 48, 641 (2006) arXiv:hep-th/0610323v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. B.M. Pimentel, V. Ya. Fainberg, Theor. Math. Phys. 124, 1234 (2000)

    Article  MATH  Google Scholar 

  32. M. Falek, M. Merad, J. Math. Phys. 51, 033516 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Griffiths, Introduction to Elementary Particles (John Wiley, New York, 1987)

  34. T. Udem et al., Phys. Rev. Lett. 79, 2646 (1997)

    Article  ADS  Google Scholar 

  35. M. Fisher et al., Phys. Rev. Lett. 92, 230802 (2004)

    Article  ADS  Google Scholar 

  36. M.M. Stetsko, V.M. Tkachuk, Phys. Rev. A 74, 012101 (2006)

    Article  ADS  Google Scholar 

  37. M.M. Stetsko, Phys. Rev. A 74, 062105 (2006)

    Article  ADS  Google Scholar 

  38. S. Benczik, L.N. Chang, D. Mimic, T. Takeuch, Phys. Rev. A 72, 012104 (2005)

    Article  ADS  Google Scholar 

  39. S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  40. S. Das, E.C. Vagenas, Can. J. Phys. 87, 233 (2009)

    Article  ADS  Google Scholar 

  41. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  42. V. Ya. Fainberg, B.M. Pimentel, Braz. J. Phys. 30, 275 (2000)

    Article  ADS  Google Scholar 

  43. R.A. Akhouri, Y.P. Yao, Phys. Lett. B 572, 37 (2003) arXiv:hep-th/0302108v2

    Article  ADS  Google Scholar 

  44. F. Brau, J. Phys. A 32, 7691 (1999) arXiv:quant-ph/9905033

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shams Sajadi, S. Formulation of spin-1 fields in deformed space-time with minimal length based on Quesne-Thachuk algebra. Eur. Phys. J. Plus 128, 57 (2013). https://doi.org/10.1140/epjp/i2013-13057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13057-5

Keywords

Navigation