Skip to main content
Log in

Novel analysis of spinor interactions and non-Riemannian geometry

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A novel analysis of the gauge theory of the local Lorentz group is implemented both in flat and in curved space-time, and the resulting dynamics is analyzed in view of the geometrical interpretation of the gauge potential. The Yang-Mills picture of local Lorentz transformations is first approached in a second-order formalism. For the Lagrangian approach to reproduce the second Cartan structure equation as soon as the Lorentz gauge connections are identified with the contortion tensor, an interaction term between the Lorentz gauge fields and the spin connections has to be postulated. The full picture involving gravity, torsion and spinors is described by a coupled set of field equations, which allows one to interpret both gravitational spin connections and matter spin density as the source term for the Yang-Mills equations. The contortion tensor acquires a propagating character, because of its non-Abelian feature, and the pure contact interaction is restored in the limit of vanishing Lorentz connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Utiyama, Phys. Rev. 101, 1597 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T.W.B. Kibble, J. Math. Phys. 2, 212 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Blagojevic, Gravitation and Gauge Symmetries (IoP Publishing, 2002)

  4. F.W. Hehl, P. von der Heyde, G.D. Kerlick, J. Nester, Rev. Mod. Phys. 48, 393 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  5. F.W. Hehl, Gen. Relativ. Gravit. J. 4, 333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  6. F.W. Hehl, Gen. Relativ. Gravit. J. 5, 491 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  7. F.W. Hehl, P. von der Heyde, G.D. Kerlick, Phys. Rev. D 10, 1066 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Von der Heyde, Phys. Lett. A 58, 141 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Blagojevic, SFIN A 1, 147 (2003) gr-qc/0302040

    Google Scholar 

  10. S. Deser, C.J. Isham, Phys. Rev. D 14, 2505 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Nitsch, in Proceedings of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion and Supergravity, Erice (Italy) 1979, edited by P.G. Bergmann, V. de Sabbata (Plenum Press, New York, 1980) p. 63

  12. F.W. Hehl, in Proceedings of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion and Supergravity, Erice (Italy) 1979, edited by P.G. Bergmann, V. de Sabbata (Plenum Press, New York, 1980) p. 5

  13. R. Wald, General Relativity (The University of Chicago Press, 1984)

  14. A. Barducci, R. Casalbuoni, L. Lusanna, Nucl. Phys. B 124, 521 (1976)

    Article  ADS  Google Scholar 

  15. A. Cant, Y. Ne'eman, J. Math. Phys. 26, 3180 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Y. Ne'eman, D. Sijacki, Found. Phys. 27, 1105 (1997) gr-qc/9804037

    Article  MathSciNet  ADS  Google Scholar 

  17. O.M. Lecian, S. Mercuri, in Proceedings of the 9th Marcel Grossmann Meeting, Berlin 2006 (World Scientific, 2008) p. 2668

  18. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne'eman, Phys. Rep. 258, 1 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Y.N. Obukhov, J.G. Pereira, Phys. Rev. D 76, 044016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  20. F. Gronwald, F.W. Hehl, On the Gauge Aspects of Gravity, in Proceedings of the 14th Course of the School of Cosmology and Gravitation, Erice (Italy) 1995 (World Scientific, Singapore, 1996)

  21. F.W. Hehl, A. Macias, Int. J. Mod. Phys. D 8, 399 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. N. Carlevaro, O.M. Lecian, G. Montani, Ann. Fond. L. de Broglie 32, 281 (2007)

    MathSciNet  Google Scholar 

  23. N. Carlevaro, O.M. Lecian, G. Montani, Int. J. Mod. Phys. A 23, 1282 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. G. Aprea, G. Montani, R. Ruffini, Int. J. Mod. Phys. D 12, 1875 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  25. R. de Azeredo Campos, P.S. Letelier, Prog. Theor. Phys. 75, 1359 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  26. H.J. Xie, T. Shirafuji, Prog. Theor. Phys. 97, 129 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Hayashi, T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A. Tiemblo, R. Tresguerres, Eur. Phys. J. C 42, 437 (2005)

    Article  ADS  Google Scholar 

  30. C. Wiesendanger, in Proceedings on ``Quantum Gravity'', Erice (Italy) 1995 (World Scientific, Singapore, 1996) gr-qc/9604043

  31. C. Wiesendanger, Class. Quantum Grav. 13, 681 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. F.W. Hehl, J. Nitsch, P. von der Heyde, in General Relativity and Gravitation - One Hundred Years after the Birth of A. Einstein, edited by A. Held, Vol. 1 (Plenum, 1980) p. 329

  34. J. Nitsch, in Cosmology and Gravitation - Spin, Torsion, Rotation and Supergravity, edited by P.G. Bergmann, V. de Sabbata (Plenum, 1980) p. 63

  35. M. Blagojević, M. Vasilić, Class. Quantum Grav. 17, 3785 (2000)

    Article  ADS  MATH  Google Scholar 

  36. W. Kopczyński, J. Phys. A 15, 493 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. W.-H. Cheng, D.-C. Chern, J.M. Nester, Phys. Rev. D 38, 2656 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  38. H. Chen, J.M. Nester, H.J. Yo, Acta Phys. Pol. B 29, 961 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  39. M. Leclerc, Phys. Rev. D 71, 027503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Leclerc, Phys. Rev. D 72, 044002 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  41. F. Mandl, F. Shaw, Quantum Field Theory (J. Wiley and Sons, 1984)

  42. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995)

  43. I.L. Shapiro, Phys. Rep. 357, 113 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. T. Obata, Prog. Theor. Phys. 70, 622 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  45. F. Bigazzi, L. Lusanna, Int. J. Mod. Phys. A 14, 1877 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. A. Ashtekar, J.D. Romano, R.S. Tate, Phys. Rev. D 40, 2572 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Casanova, O.M. Lecian, G. Montani, R. Ruffini, R. Zalaletdinov, Mod. Phys. Lett. A 23, 17 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. K. Hajashi, T. Shirafui, Prog. Theor. Phys. 64, 883 (1980)

    Article  ADS  Google Scholar 

  49. K. Hajashi, T. Shirafui, Prog. Theor. Phys. 64, 1435 (1980)

    Article  ADS  Google Scholar 

  50. R.T. Hammond, Rep. Prog. Phys. 65, 599 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  51. S.M. Carroll, G.B. Field, Phys. Rev. D 50, 3867 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecian, O.M., Montani, G. & Carlevaro, N. Novel analysis of spinor interactions and non-Riemannian geometry. Eur. Phys. J. Plus 128, 19 (2013). https://doi.org/10.1140/epjp/i2013-13019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13019-y

Keywords

Navigation