Skip to main content
Log in

The stochastic resonance in a system of gradient type

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The time behavior of a coupled, parity-conserving, two-dimensional system of gradient type, perturbed by a Wiener process and forced by an external periodic component added to one of the two state variables, is here studied. Minimum energy paths joining stable steady states are estimated using the string method. The system is found to exhibit stochastic resonance behavior with unexpected large amplification, compared with the classical one-dimensional case, for values of the coupling constant ranging between -1 and 0. The mechanism seems to survive also when the system is not strictly of gradient type (a perturbative rotational component does not affect the occurrence of the stochastic amplification). Finally, the implications of the present analysis on the stochastic climate model, originally developed to explain ice ages transitions, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benzi, G. Jona-Lasinio, A. Sutera, J. Stat. Phys. 55, 505 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Benzi, A. Sutera, J. Phys. A 37, L391 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  4. V.M. Gandhimathi, K. Murali, S. Rajasekar, Physica A 347, 99 (2005).

    Article  ADS  Google Scholar 

  5. C.-J. Fang, X.-B. Liu, Chin. Phys. Lett. 29, 050504 (2012).

    Article  ADS  Google Scholar 

  6. M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, 2nd edition (Springer, New York, 1998).

  7. W. Ren, Comm. Math. Sci. 1, 377 (2003).

    Article  MATH  Google Scholar 

  8. Z. Schuss, Theory and Applications of Stochastic Differential Equations (John Wiley & Sons, 1980).

  9. R. Benzi, A. Sutera, J. Phys. A 17, 2551 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. H. Jósson, G. Mills, K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998) pp. 385--404.

  11. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd edition (Springer, 1999).

  12. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edition (Cambridge University Press, 1992).

  13. R. Benzi, G Parisi, A Sutera, A. Vulpiani, Tellus 34, 10 (1982).

    Article  ADS  Google Scholar 

  14. A. Sutera, Q. J. Roy. Meteor. Soc. 107, 137 (1981).

    Article  ADS  Google Scholar 

  15. A. Sutera, J. Atmos. Sci. 37, 245 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  16. R.S. Lindzen, Eur. Phys. J. Plus. 127, 52 (2012).

    Article  Google Scholar 

  17. T.M. Lenton, H. Held, E. Friegler, J.W. Hall, W. Lucht, S. Rahmstorf, H.J. Schellnhuber, Proc. Natl. Acad. Sci. 105, 1786 (2008).

    Article  ADS  MATH  Google Scholar 

  18. I. Bordi, K. Fraedrich, A Sutera, X. Zhu, Theor. Appl. Climatol. 109, 245 (2012).

    Article  ADS  Google Scholar 

  19. I. Bordi, K. Fraedrich, A Sutera, X. Zhu, Clim. Dyn. 40, 651 (2013).

    Article  Google Scholar 

  20. S. Fauve, F. Heslot, Phys. Lett. A 97, 5 (1983).

    Article  ADS  Google Scholar 

  21. B. Saltzman, A. Sutera, J. Atmos. Sci. 41, 736 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Bordi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbini, L., Bordi, I., Fraedrich, K. et al. The stochastic resonance in a system of gradient type. Eur. Phys. J. Plus 128, 13 (2013). https://doi.org/10.1140/epjp/i2013-13013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13013-5

Keywords

Navigation