Abstract
In this paper, we have looked at the system of two cavities, each of them having N atoms, and both connected by an optical fiber. The process for the construction of a SWAP gate among two spatially separated cavities and N atoms via a stimulated Raman adiabatic passage has been presented. It does not require a composition of elementary gates from a universal set and it shows that a highly reliable SWAP gate is achievable based on adiabatic passage. The SWAP operation involves three types of atomic states: with 0 excitation, single excitation and two excitations. The two-excitation state corresponds to double excitation of the atoms. Possible pathways for information transfer for this double excitation the explained. In this scheme the last state involves 1 atom in the excited state and N - 1 atoms in the ground state of cavity one and one atom in the excited state and N - 1 atoms in the ground state of cavity 2 and this is not connected to the rest of the 7 states.
This is a preview of subscription content, access via your institution.
References
A. Steane, Rep. Prog. Phys 61, 117 (1998)
J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Phys. Rev. A 59, 4249 (1999)
D.P. DiVincenzo, Phys. Rev. A 51, 1015 (1995)
A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A. 52, 3457 (1995)
G.V. Varada, G.S. Agarwal, Phys. Rev. A 45, 6721 (1992)
D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Coté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)
I.E. Protsenko, G. Reymond, N. Schlosser, P. Grangier, Phys. Rev. A 65, 052301 (2002)
M. Orrit, Science 298, 369 (2002)
C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, V. Sandoghdar, Science 298, 385 (2002)
M. Saffman, T.G. Walker, Phys. Rev. A 72, 042302 (2005)
D. Møller, L.B. Madsen, K. Mølmer, Phys. Rev. Lett. 100, 170504 (2008)
M. Saffman, K. Mølmer, Phys. Rev. Lett. 102, 240502 (2009)
T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Phys. Rev. Lett. 97, 083003 (2006)
M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)
T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, P. Pillet, Phys. Rev. Lett. 99, 073002 (2007)
R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Phys. Rev. Lett. 99, 163601 (2007)
K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)
A.S. Parkins, P. Marte, P. Zoller, H.J. Kimble, Phys. Rev. Lett. 71, 3095 (1993)
N.V. Vitanov, T. Halffman, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001)
M.M.T. Loy, Phys. Rev. Lett. 32, 814 (1974)
K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)
N. Sangouard, X. Lacour, S. Guérin, H.R. Jauslin, Phys. Rev. A. 72, 062309 (2005)
Y.L. Lim et al., Phys. Rev. Lett 95, 030505 (2005)
J. Cho, L.W. Lee, Phys. Rev. Lett 95, 160501 (2005)
Z.Q. Yin, F.L. Li, Phys. Rev. A 75, 012324 (2007)
L.M. Duan, H.J. Kimble, Phys. Rev. Lett. 90, 253601 (2003)
S. Mancini, S. Bose, Phys. Rev. A 70, 022307 (2005)
D.E. Browne, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 91, 067901 (2003)
S. Clark, A. Peng, M. Gu, S. Parkins, Phys. Rev. Lett. 91, 177901 (2003)
J. Gillet, G.S. Agarwal, T. Bastin, Phys. Rev. A 81, 013837 (2010)
Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)
L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)
M. Lemeshko, R.V. Krems, H. Weimer, Phys. Rev. Lett. 109, 035301 (2012)
W.H. Louisell, Quantum Statistical Properties of Radiation (John Wiley & Sons, New York, 1973)
R.H. Dicke, Phys. Rev. 93, 99 (1954)
T.E. Kiess et al., Phys. Rev. Lett. 71, 3893 (1993)
T. Tashima et al., Phys. Rev. A 77, 030302 (2008)
M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001)
D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Côté, E.E. Eyler, P.L. Gould, Phys. Rev. Lett. 93, 063001 (2004)
T.C. Liebisch, A. Reinhard, P.R. Berman, G. Raithel, Phys. Rev. Lett. 95, 253002 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Molouki, L., Yahyavi, M., Esmaili, P. et al. Generation of SWAP gate between two remote cavities via an optical fiber by adiabatic passage. Eur. Phys. J. Plus 127, 134 (2012). https://doi.org/10.1140/epjp/i2012-12134-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2012-12134-7
Keywords
- Rabi Frequency
- Optical Cavity
- Quantum Gate
- Linkage Pattern
- Adiabatic Passage