Skip to main content
Log in

Generation of SWAP gate between two remote cavities via an optical fiber by adiabatic passage

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have looked at the system of two cavities, each of them having N atoms, and both connected by an optical fiber. The process for the construction of a SWAP gate among two spatially separated cavities and N atoms via a stimulated Raman adiabatic passage has been presented. It does not require a composition of elementary gates from a universal set and it shows that a highly reliable SWAP gate is achievable based on adiabatic passage. The SWAP operation involves three types of atomic states: with 0 excitation, single excitation and two excitations. The two-excitation state corresponds to double excitation of the atoms. Possible pathways for information transfer for this double excitation the explained. In this scheme the last state involves 1 atom in the excited state and N - 1 atoms in the ground state of cavity one and one atom in the excited state and N - 1 atoms in the ground state of cavity 2 and this is not connected to the rest of the 7 states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Steane, Rep. Prog. Phys 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Phys. Rev. A 59, 4249 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. D.P. DiVincenzo, Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  4. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A. 52, 3457 (1995)

    Article  ADS  Google Scholar 

  5. G.V. Varada, G.S. Agarwal, Phys. Rev. A 45, 6721 (1992)

    Article  ADS  Google Scholar 

  6. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Coté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  7. I.E. Protsenko, G. Reymond, N. Schlosser, P. Grangier, Phys. Rev. A 65, 052301 (2002)

    Article  ADS  Google Scholar 

  8. M. Orrit, Science 298, 369 (2002)

    Article  Google Scholar 

  9. C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, V. Sandoghdar, Science 298, 385 (2002)

    Article  Google Scholar 

  10. M. Saffman, T.G. Walker, Phys. Rev. A 72, 042302 (2005)

    Article  ADS  Google Scholar 

  11. D. Møller, L.B. Madsen, K. Mølmer, Phys. Rev. Lett. 100, 170504 (2008)

    Article  Google Scholar 

  12. M. Saffman, K. Mølmer, Phys. Rev. Lett. 102, 240502 (2009)

    Article  ADS  Google Scholar 

  13. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Phys. Rev. Lett. 97, 083003 (2006)

    Article  ADS  Google Scholar 

  14. M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  15. T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, P. Pillet, Phys. Rev. Lett. 99, 073002 (2007)

    Article  ADS  Google Scholar 

  16. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Phys. Rev. Lett. 99, 163601 (2007)

    Article  ADS  Google Scholar 

  17. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)

    Article  ADS  Google Scholar 

  18. A.S. Parkins, P. Marte, P. Zoller, H.J. Kimble, Phys. Rev. Lett. 71, 3095 (1993)

    Article  ADS  Google Scholar 

  19. N.V. Vitanov, T. Halffman, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001)

    Article  ADS  Google Scholar 

  20. M.M.T. Loy, Phys. Rev. Lett. 32, 814 (1974)

    Article  ADS  Google Scholar 

  21. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  22. N. Sangouard, X. Lacour, S. Guérin, H.R. Jauslin, Phys. Rev. A. 72, 062309 (2005)

    Article  ADS  Google Scholar 

  23. Y.L. Lim et al., Phys. Rev. Lett 95, 030505 (2005)

    Article  ADS  Google Scholar 

  24. J. Cho, L.W. Lee, Phys. Rev. Lett 95, 160501 (2005)

    Article  ADS  Google Scholar 

  25. Z.Q. Yin, F.L. Li, Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  26. L.M. Duan, H.J. Kimble, Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  27. S. Mancini, S. Bose, Phys. Rev. A 70, 022307 (2005)

    Article  ADS  Google Scholar 

  28. D.E. Browne, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 91, 067901 (2003)

    Article  ADS  Google Scholar 

  29. S. Clark, A. Peng, M. Gu, S. Parkins, Phys. Rev. Lett. 91, 177901 (2003)

    Article  ADS  Google Scholar 

  30. J. Gillet, G.S. Agarwal, T. Bastin, Phys. Rev. A 81, 013837 (2010)

    Article  ADS  Google Scholar 

  31. Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  33. M. Lemeshko, R.V. Krems, H. Weimer, Phys. Rev. Lett. 109, 035301 (2012)

    Article  ADS  Google Scholar 

  34. W.H. Louisell, Quantum Statistical Properties of Radiation (John Wiley & Sons, New York, 1973)

  35. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  36. T.E. Kiess et al., Phys. Rev. Lett. 71, 3893 (1993)

    Article  ADS  Google Scholar 

  37. T. Tashima et al., Phys. Rev. A 77, 030302 (2008)

    Article  ADS  Google Scholar 

  38. M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  39. D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Côté, E.E. Eyler, P.L. Gould, Phys. Rev. Lett. 93, 063001 (2004)

    Article  ADS  Google Scholar 

  40. T.C. Liebisch, A. Reinhard, P.R. Berman, G. Raithel, Phys. Rev. Lett. 95, 253002 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yahyavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molouki, L., Yahyavi, M., Esmaili, P. et al. Generation of SWAP gate between two remote cavities via an optical fiber by adiabatic passage. Eur. Phys. J. Plus 127, 134 (2012). https://doi.org/10.1140/epjp/i2012-12134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12134-7

Keywords

Navigation