Electric dipole moment from QCD \( \theta\) and how it vanishes for mixed states

  • A. P. Balachandran
  • T. R. Govindarajan
  • A. R. de Queiroz
Regular Article

Abstract

In a previous paper (A.P. Balachandran et al., JHEP 05, 012 (2012)), we studied the \( \eta{^\prime}\) mass and formulated its chirally symmetric coupling to fermions which induces electric dipole moment (EDM) maintaining chiral symmetry throughout in contrast to earlier works. Here we calculate the EDM to one loop. It is finite, having no ultraviolet divergence while its infrared divergence is canceled by soft photon emission processes exactly as for \(\ensuremath \theta=0\) . The coupling does not lead to new divergences (not present for \(\ensuremath \cos\theta=1\) in soft photon processes either. Furthermore, as was argued previously (A.P. Balachandran et al., JHEP 05, 012 (2012)), the EDM vanishes if suitable mixed quantum states are used. This means that in a quantum theory based on such mixed states, a strong bound on EDM will not necessarily lead to a strong bound such as \(\ensuremath \vert\sin\theta\vert\lesssim10^{-11}\) . This fact eliminates the need to fine tune \( \theta\) or for the axion field.

References

  1. 1.
    V. Baluni, Phys. Rev. D 19, 2227 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    G. Veneziano, Nucl. Phys. B 159, 213 (1979)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R.J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, Phys. Lett. B 88, 123 (1979) 91ADSCrossRefGoogle Scholar
  4. 4.
    E. Witten, Ann. Phys. 128, 363 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    S. Dar, hep-ph/0008248Google Scholar
  6. 6.
    M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005) hep-ph/0504231ADSCrossRefMATHGoogle Scholar
  7. 7.
    A.P. Balachandran, A.R. Queiroz, Phys. Rev. D 85, 025017 (2012) arXiv:1108.3898 [hep-th]ADSCrossRefGoogle Scholar
  8. 8.
    A.P. Balachandran, T.R. Govindarajan, A.R. de Queiroz, JHEP 05, 012 (2012)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    B. Czech, J.L. Karczmarek, F. Nogueira, M. Van Raamsdonk, arXiv:1206.1323 [hep-th]
  10. 10.
    A.P. Balachandran, A.R. de Queiroz, JHEP 11, 126 (2011) arXiv:1109.5290 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    R.A. Bertlmann, Anomalies in quantum field theory, in International series of monographs on physics, Vol. 91 (Clarendon, Oxford, 1996) p. 566Google Scholar
  12. 12.
    J.A. Harvey, hep-th/0509097Google Scholar
  13. 13.
    C. Rosenzweig, J. Schechter, C.G. Trahern, Phys. Rev. D 21, 3388 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    A. Aurilia, Y. Takahashi, P.K. Townsend, Phys. Lett. B 95, 265 (1980)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    K. Kawarabayashi, N. Ohta, Nucl. Phys. B 175, 477 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kawarabayashi, N. Ohta, Prog. Theor. Phys. 66, 1789 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    N. Ohta, Prog. Theor. Phys. 66, 1408 (1981) 67ADSCrossRefMATHGoogle Scholar
  18. 18.
    S. Weinberg, The Quantum theory of fields, Vol. 1: Foundations (Cambridge University Press, 1995)Google Scholar
  19. 19.
    J.S. Schwinger, Phys. Rev. 73, 416 (1948)MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    A.P. Balachandran, T.R. Govindarajan, A.R. Queiroz, A.F. Reyes-Lega, arXiv:1205.2882 [quant-ph]
  21. 21.
    A.P. Balachandran, T.R. Govindarajan, A.R. Queiroz, A.F. Reyes-Lega, in preparationGoogle Scholar
  22. 22.
    A.P. Balachandran, G.Marmo, N.Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F.Zaccaria, Phys. Rev. D 29, 2919 (1984)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F. Zaccaria, Phys. Rev. D 29, 2936 (1984)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    C.Y. Wong, Introduction to high-energy heavy ion collisions (World Scientific, Singapore, 1994)Google Scholar
  25. 25.
    F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson, A.R. Santana, Thermal Quantum Field Theory: Algebraic Aspects and Applications (World Scientific, Singapore, 2009)Google Scholar
  26. 26.
    G. Bimonte, New J. Phys. 9, 281 (2007)CrossRefGoogle Scholar
  27. 27.
    G. Bimonte et al., Nucl. Phys. B 726, 441 (2005) hep-th/0505200ADSCrossRefMATHGoogle Scholar
  28. 28.
    G. Bimonte et al., Phys. Rev. Lett 94, 180402 (2005) quant-ph/0406188ADSCrossRefGoogle Scholar
  29. 29.
    A.P. Balachandran, G. Marmo, B.S. Skagerstam, A. Stern, Classical topology and quantum states (World Scientific Publishing Co Inc, 1991)Google Scholar
  30. 30.
    N.D. Hari Dass, S. Kalyana Rama, B. Sathiapalan, Int. J. Mod. Phys. A 18, 2947 (2003)ADSCrossRefMATHGoogle Scholar
  31. 31.
    A.P. Balachandran, A. Simoni, D.M. Witt, Int. J. Mod. Phys. A 7, 2087 (1992)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. P. Balachandran
    • 1
    • 2
  • T. R. Govindarajan
    • 2
  • A. R. de Queiroz
    • 2
    • 3
  1. 1.Physics DepartmentSyracuse UniversitySyracuseUSA
  2. 2.Institute of Mathematical SciencesCIT Campus, TaramaniChennaiIndia
  3. 3.Instituto de FisicaUniversidade de BrasiliaBrasiliaBrazil

Personalised recommendations