Skip to main content
Log in

A formulation to compute mass-consistent models of hydrodynamic flows

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Standard interpolation methods of measured data of an incompressible fluid yield a non-solenoidal field v 0. A formulation to estimate a solenoidal field from v 0, is proposed. Variational calculus reduces the problem to the solution of an elliptic equation for a Lagrange multiplier. Examples illustrate how boundary conditions improve the mass-balance of velocity fields obtained in meteorology with similar approaches. The elliptic equation is separable in meteorological problems over a complex orography. This allows the use of fast-Poisson solvers. It is shown how the flow-rate can be used to define a low-pass filter which improves the results given by the Fast Fourier Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.L. Seaman, Atmos. Environ. 34, 2231 (2000).

    Article  ADS  Google Scholar 

  2. P. Zannetti, Air Pollution Modeling: Theories, Computational Methods and Available Software (van Nostrand Reinhold, New York, 1990).

  3. J.P. Peixoto, A.H. Oort, Physics of Climate (AIP, New York, 1992).

  4. R. Daley, Atmospheric Data Analysis (Cambridge University Press, New York, 1991).

  5. K.E. Trenberth, J.W. Hurrell, A. Solomon, J. Climat. 8, 692 (1995).

    Article  ADS  Google Scholar 

  6. D.W. Byun, J. Atmos. Sci. 56, 3808 (1999).

    Article  ADS  Google Scholar 

  7. C.F. Ratto, R. Festa, C. Romeo, O.A. Frumento, M. Galluzzi, Environ. Softw. 9, 247 (1994).

    Article  Google Scholar 

  8. C.F. Ratto, An overview of mass-consistent models, in Modeling of Atmospheric Flows, edited by D.P. Lala, C.F. Ratto (World Scientific Publishing, Singapore, 1996) pp. 379--400.

  9. G.F. Homicz, Three-Dimensional Wind Field Modeling: A Review, Sandia National Laboratories, report SAN2002-2597 (2002).

  10. R. Martens, H. Thielen, T. Sperling, K. Masmeyer, Int. J. Environ. Pollut. 14, 573 (2000).

    Google Scholar 

  11. S. Finardi, G. Tinarelli, A. Nanni, G. Brusasca, G. Carboni, Int. J. Environ. Pollut. 16, 472 (2001).

    Google Scholar 

  12. X. Guo, J.P. Palutikof, Boundary-Layer Meteor. 53, 303 (1990).

    Article  ADS  Google Scholar 

  13. G. Gross, Boundary-Layer Meteor. 77, 379 (1996).

    Article  ADS  Google Scholar 

  14. F. Castino, L. Rusca, G. Solari, J. Wind Eng. Ind. Aerodyn. 91, 1353 (2003).

    Article  Google Scholar 

  15. A. Conte, A. Pavone, C.F. Ratto, J. Wind Eng. Ind. Aerodyn. 74-76, 355 (1998).

    Article  Google Scholar 

  16. Y. Sasaki, Mont. Weather Rev. 98, 875 (1970).

    Article  ADS  Google Scholar 

  17. M.H. Dickerson, J. Appl. Meteorol. 17, 241 (1978).

    Article  ADS  Google Scholar 

  18. C.A. Sherman, J. Appl. Meteorol. 17, 312 (1978).

    Article  ADS  Google Scholar 

  19. T. Kitada, A. Kaki, H. Ueda, L.K. Peters, Atmos. Environ. 17, 2181 (1983).

    Article  ADS  Google Scholar 

  20. J.C. Barnard, H.L. Wegley, T.R. Hiester, J. Climate Appl. Meteorol. 26, 675 (1987).

    Article  ADS  Google Scholar 

  21. D.G. Ross, I.N. Smith, P.C. Manins, D.G. Fox, J. Appl. Meteorol. 27, 785 (1988).

    Article  ADS  Google Scholar 

  22. Y. Heta, J. Meteorol. Soc. Jpn 70, 783 (1992).

    Google Scholar 

  23. M.A. Núñez, C. Flores, H. Juárez, J. Comput. Methods Sci. Eng. 6, 365 (2006).

    MATH  Google Scholar 

  24. T. Kitada, K. Igarashi, M. Owada, J. Appl. Meteorol. 25, 767 (1986).

    Article  ADS  Google Scholar 

  25. N. Moussiopoulos, Th. Flassak, J. Appl. Meteorol. 25, 847 (1986).

    Article  ADS  Google Scholar 

  26. H. Ishikawa, J. Appl. Meteorol. 33, 733 (1994).

    Article  ADS  Google Scholar 

  27. N. Sanín, G. Montero, Adv. Eng. Softw. 38, 358 (2007).

    Article  MATH  Google Scholar 

  28. M.A. Núñez, C. Flores, H. Juárez, J. Comput. Methods Sci. Eng. 7, 21 (2007).

    MathSciNet  MATH  Google Scholar 

  29. C. Flores, H. Juárez, M.A. Núñez, M.L. Sandoval, Numer. Methods Partial Differ. Equ. 26, 826 (2010).

    MATH  Google Scholar 

  30. M.A. Núñez, New scheme to compute mass-consistent models of geophysical flows, in Proceedings of the I Workshop on Asymptotics for Parabolic and Hyperbolic Systems (Laboratóiro Nacional de Computação Científica, Petrópolis-R. J., 2008).

  31. M.A. Núñez, Eur. Phys. J. Plus 127, 40 (2012).

    Article  Google Scholar 

  32. C. Wunsch, The Ocean Circulation Inverse Problem (Cambridge University Press, New York, 1996).

  33. Raffel Markus, C.E. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998).

  34. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, 1992).

  35. C. van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992).

  36. K. Rektorys, Variational Methods in Mathematics, Science and Engineering (D. Reidel, Dordrecht, 1977).

  37. H.F. Weinberger, A First Course in Partial Differential Equations: with Complex Variables and Transform Methods (Dover, New York, 1995).

  38. R.L. Burden, J.D. Faires, Numerical Analysis (PWS-KENT, Boston, 1985).

  39. J. Holton, An introduction to Dynamic Meteorology (Academic Press, San Diego, 1992) Sect. 3.5.

  40. T.N. Krishnamirti, An introduction to Numerical Weather Prediction Techniques (CRC Press, Boca Raton, 1996) Chapt. 3.

  41. E. Rodríguez, G. Montero, R. Montenegro, J.M. Escobar, J.M. Gonzalez-Yuste, Lect. Notes Comput. Sci. 2339, 950 (2002).

    Article  Google Scholar 

  42. M. Harada, S. Hayashi, Wakimizu, J. Fac. Agric., Kyushu Univ. 44, 403 (2000).

    Google Scholar 

  43. V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equation, Theory and Algorithms (Springer, Berlin, 1986).

  44. H. Hochstadt, Differential Equations: A Modern Approach (Dover, New York, 1964) Chapt. 6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, M.A., Sánchez-Sánchez, J.E. A formulation to compute mass-consistent models of hydrodynamic flows. Eur. Phys. J. Plus 127, 39 (2012). https://doi.org/10.1140/epjp/i2012-12039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12039-5

Keywords

Navigation