Skip to main content
Log in

The Lagrangian dynamics of thermal tracer particles in Navier-Stokes fluids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A basic issue for Navier-Stokes (NS) fluids is their characterization in terms of the so-called NS phase-space classical dynamical system, which provides a mathematical model for the description of the dynamics of infinitesimal (or ideal) tracer particles in these fluids. The goal of this paper is to analyze the properties of a particular subset of solutions of the NS dynamical system, denoted as thermal tracer particles (TTPs), whose states are determined uniquely by the NS fluid fields. Applications concerning both deterministic and stochastic NS fluids are pointed out. In particular, in both cases it is shown that in terms of the ensemble of TTPs a statistical description of NS fluids can be formulated. In the case of stochastic fluids this feature permits to uniquely establish the corresponding Langevin and Fokker-Planck dynamics. Finally, the relationship with the customary statistical treatment of hydrodynamic turbulence (HT) is analyzed and a solution to the closure problem for the statistical description of HT is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massimo Tessarotto, Claudio Asci, Claudio Cremaschini, Alessandro Soranzo, Marco Tessarotto, Gino Tironi, Tracer-particle dynamics in MHD fluids, in Proceedings of the 8th International Pamir Conference (Borgo, Corsica, France, 5-9 September 2011), Vol. I (2011) p. 429.

  2. Marco Tessarotto, Claudio Cremaschini, Massimo Tessarotto, Physica A 388, 3737 (2009).

    Article  MathSciNet  Google Scholar 

  3. M. Ellero, M. Tessarotto, Bull. Am. Phys. Soc. 45, 40 (2000).

    Google Scholar 

  4. M. Tessarotto, M. Ellero, AIP Conf. Proc. 762, 108 (2005).

    Article  ADS  Google Scholar 

  5. M. Ellero, M. Tessarotto, Physica A 355, 233 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Tessarotto, M. Ellero, Proceedings of the 25th RGD (International Symposium on Rarefied gas Dynamics, St. Petersburg, Russia, July 21-28, 2006), edited by M.S. Ivanov, A.K. Rebrov (Novosibirsk Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2007) p. 1001, arXiv:physics/0611113.

  7. M. Tessarotto, Magnetohydrodynamics J. 45, 3 (2009).

    Google Scholar 

  8. M. Tessarotto, M. Ellero, P. Nicolini, Phys. Rev. A 75, 012105 (2007).

    Article  ADS  Google Scholar 

  9. Marco Tessarotto, Claudio Cremaschini, Piero Nicolini, Massimo Tessarotto, AIP Conf. Proc. 1084, 182 (2008).

    Article  Google Scholar 

  10. M. Tessarotto, M. Ellero, P. Nicolini, AIP Conf. Proc. 1084, 230 (2008).

    Article  ADS  Google Scholar 

  11. M. Grmela, H.C. Oettinger, Phys. Rev. E 56, 6620 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  12. H.C. Oettinger, M. Grmela, Phys. Rev. E 56, 6633 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  13. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995) Chapt. 3.

  14. M.J. Vishik, A.V. Fursikov, Mathematical problems of Statistical Hydrodynamics (Kluwer, Dordrecht, 1988).

  15. D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University Press, Cambridge, 1995).

  16. C.M. Tchen, Ph.D. thesis, Delft, Martinus Nijhoff, The Hague (1947).

  17. S. Corrsin, J. Lumley, Appl. Sci. Res. A 6, 114 (1995).

    MathSciNet  Google Scholar 

  18. Y.A. Buevich, Fluid Dynam. 1, 119 (1966).

    Article  ADS  Google Scholar 

  19. J.J. Riley, PhD thesis, The Johns Hopkins University, Baltimore, Maryland (1971).

  20. M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983).

    Article  ADS  MATH  Google Scholar 

  21. A.M. Basset, Treatise of Hydrodynamics, Vol. 2 (Deighton Bell, London, 1888) Chapt. 22, pp. 285-297.

  22. J. Boussinesq, Theorie Analytique de la Chaleur, Vol. 2 (L’Ecole Polytecnique, Paris, 1903) p. 224.

  23. C.W. Oseen, Hydrodynamik (Leipzig, 1927) p. 132.

  24. E. Hopf, J. Ration. Mech. Anal. 1, 87 (1952).

    MathSciNet  MATH  Google Scholar 

  25. G. Rosen, Phys. Fluids 3, 19 (1960).

    Article  MathSciNet  Google Scholar 

  26. S.E. Edwards, J. Fluid Mech. 18, 239 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  27. E.T. Jaynes, Phys. Rev. 106, 620 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. L. Brillouin, La Science et la Theorie de l’Information (Masson et Cie Chartres, impr. Durand, 1959) reprint (Sceaux, Hauts-de-Seine, Jacques Gabay, 1988).

  29. J.-L. Barrat, J.-P. Hansen, Basic Concepts for Simple and Complex Liquids (Cambridge University Press, 2003).

  30. R. Zwanzig, Non-equilibrium Statistical Mechanics, 1st edition (Oxford University Press, 2001).

  31. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  32. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, 1959).

  33. L.E. Reichl, A Modern Course in Statistical Physics, 2nd edition (Wiley, 1998).

  34. Marco Tessarotto, Massimo Tessarotto, AIP Conf. Proc. 1084, 483 (2008).

    Article  ADS  Google Scholar 

  35. T.H. Dupree, Phys. Fluids 9, 1773 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  36. S.A. Orzag, R.H. Kraichnan, Phys. Fluids 10, 1720 (1967).

    Article  ADS  Google Scholar 

  37. J. Weinstock, Phys. Fluids 12, 1045 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  38. P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973).

    Article  ADS  Google Scholar 

  39. J.J. Thompson, G. Benford, Phys. Fluids 16, 1505 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  40. J.A. Krommes, R.G. Kleva, Phys. Fluids 22, 2168 (1979).

    Article  ADS  MATH  Google Scholar 

  41. A. Naert, R. Friedrich, J. Peinke, Phys. Rev. E 56, 6719 (1997).

    Article  ADS  Google Scholar 

  42. R. Friedrich, J. Peinke, Physica D 102, 147 (1997).

    Article  ADS  MATH  Google Scholar 

  43. Ch. Renner, J. Peinke, R. Friedrich, O. Chanal, B. Chabaud, Phys. Rev. Lett. 89, 124502 (2002).

    Article  ADS  Google Scholar 

  44. E.A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964) (Sov. Phys. JETP 20, 1290 (1964)).

    Google Scholar 

  45. W. Kollmann, J. Janicka, Phys. Fluids 25, 1755 (1982).

    Article  ADS  MATH  Google Scholar 

  46. S.B. Pope, Phys. Fluids 26, 3448 (1983).

    Article  ADS  MATH  Google Scholar 

  47. M.R.H. Sheikhi, P. Givi, S.B. Pope, Phys. Fluids 21, 075102 (2009).

    Article  ADS  Google Scholar 

  48. C. Dopazo, in Turbulent Reacting Flows, edited by P.A. Libby, F.A. Williams (London Academic Press, 1994) Chapt. 7, p. 375.

  49. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, Vol. 1 and 2 (MIT Press, 1975).

  50. S.P. Pope, Turbulent flows (Cambridge University Press, 2000) p. 463.

  51. A.S. Monin, J. Appl. Math. Mech. 31, 1057 (1967).

    Article  MATH  Google Scholar 

  52. T.S. Lundgren, Phys. Fluids 10, 969 (1967).

    Article  ADS  Google Scholar 

  53. I. Hosokawa, Phys. Rev. E 78, 066312 (2008).

    Article  ADS  Google Scholar 

  54. M. Tessarotto, M. Ellero, D. Sarmah, P. Nicolini, AIP Conf. Proc. 1084, 170 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cremaschini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessarotto, M., Cremaschini, C., Asci, C. et al. The Lagrangian dynamics of thermal tracer particles in Navier-Stokes fluids. Eur. Phys. J. Plus 127, 36 (2012). https://doi.org/10.1140/epjp/i2012-12036-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12036-8

Keywords

Navigation