Skip to main content
Log in

Dynamics of quantum quenching for BCS-BEC systems in the shallow-BEC regime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The problem of coupled Fermi-Bose mixtures of an ultracold gas near a narrow Feshbach resonance is approached through the time-dependent and complex Ginzburg-Landau (TDGL) theory. The dynamical system is constructed using Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) path integral methods with the single mode approximation for the composite Bosons. The equilibrium states are obtained in the BEC regime for adiabatic variations of the Feshbach detuning along the stationary solutions of the dynamical system. Investigations into the rich superfluid dynamics of this system in the shallow-BEC regime yield the onset of multiple interference patterns in the dynamics as the system is quenched from the deep-BEC regime. This results in a partial collapse and revival of the coherent matter wave field of the BEC, whose temporal profile is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen De, Ujjwal Sen, Adv. Phys. 56, 243 (2006).

    Article  Google Scholar 

  2. P. Noziéres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  3. M. Randeria. The Crossover from BCS theory to Bose-Einstein Condensation, in Bose Einstein Condensation, edited by A. Griffin, D. Snoke, S. Stringari (Cambridge University Press, 1995) pp. 355--392.

  4. C.A.R. Sáde Melo, Mohit Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).

    Article  ADS  Google Scholar 

  5. Mohit Randeria, Ji-Min Duan, Lih-Yir Shieh, Phys. Rev. B 41, 327 (1990).

    Article  ADS  Google Scholar 

  6. M. Dreschler, W. Zwerger, Ann. Phys. (Berlin) 1, 15 (1992).

    Article  ADS  Google Scholar 

  7. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).

    Article  ADS  Google Scholar 

  8. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004).

    Article  ADS  Google Scholar 

  9. J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402 (2004).

    Article  ADS  Google Scholar 

  10. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004).

    Article  ADS  Google Scholar 

  11. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 203201 (2004).

    Article  ADS  Google Scholar 

  12. M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, R. Walser, Phys. Rev. Lett. 87, 120406 (2001).

    Article  ADS  Google Scholar 

  13. Eddy Timmermans, Paolo Tommasini, Mahir Hussein, Arthur Kerman, Phys. Rep. 315, 199 (1999).

    Article  ADS  Google Scholar 

  14. Eddy Timmermans, Kyoko Furuya, Peter W. Milonni, Arthur K. Kerman, Phys. Lett. A 285, 228 (2001).

    Article  ADS  Google Scholar 

  15. Emil A. Yuzbashyan, Vadim B. Kuznetsov, Boris L. Altshuler, Phys. Rev. B 72, 144524 (2005).

    Article  ADS  Google Scholar 

  16. Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89, 130402 (2002).

    Article  ADS  Google Scholar 

  17. J. Cubizolles, T. Bourdel, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 240401 (2003).

    Article  ADS  Google Scholar 

  18. Kevin E. Strecker, Guthrie B. Partridge, Randall G. Hulet, Phys. Rev. Lett. 91, 080406 (2003).

    Article  ADS  Google Scholar 

  19. D.S. Petrov, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).

    Article  ADS  Google Scholar 

  20. Elizabeth A. Donley, Neil R. Claussen, Sarah T. Thompson, Carl E. Wieman, Nature 417, 529 (2002).

    Article  ADS  Google Scholar 

  21. T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhães, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003).

    Article  ADS  Google Scholar 

  22. Mohit Randeria, Nat. Phys. 6, 561 (2010).

    Article  Google Scholar 

  23. Stefano Giorgini, Lev P. Pitaevskii, Sandro Stringari, Rev. Mod. Phys. 80, 1215 (2008).

    Article  ADS  Google Scholar 

  24. Immanuel Bloch, Jean Dalibard, Wilhelm Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  25. Markus Greiner, Olaf Mandel, Theodor W. Hänsch, Immanuel Bloch, Nature 419, 51 (2002).

    Article  ADS  Google Scholar 

  26. M.L. Olsen, J.D. Perreault, T.D. Cumby, D.S. Jin, Phys. Rev. A 80, 030701(R) (2009).

    Article  ADS  Google Scholar 

  27. A.V. Andreev, V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 93, 130402 (2004).

    Article  ADS  Google Scholar 

  28. R.A. Barankov, L.S. Levitov, Phys. Rev. Lett. 93, 130403 (2004).

    Article  ADS  Google Scholar 

  29. H. Uys, T. Miyakawa, D. Meiser, P. Meystre, Phys. Rev. A 72, 053616 (2005).

    Article  ADS  Google Scholar 

  30. Michael W. Jack, Han Pu, Phys. Rev. A 72, 063625 (2005).

    Article  ADS  Google Scholar 

  31. Emil A. Yuzbashyan, Oleksandr Tsyplyatyev, Boris L. Altshuler, Phys. Rev. Lett. 96, 097005 (2006).

    Article  ADS  Google Scholar 

  32. H.B. Huang, C.X. Yang, L.J. Sun, L. Chen, J. Li, Phys. Lett. A 372, 5748 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Igor S. Aranson, Lorenz Kramer, Rev. Mod. Phys. 74, 99 (2002).

    Article  ADS  MATH  Google Scholar 

  34. M. Machida, T. Koyama, Phys. Rev. A 74, 033603 (2006).

    Article  ADS  Google Scholar 

  35. R.A. Duine, H.T.C. Stoof, Phys. Rep. 396, 115 (2004).

    Article  ADS  Google Scholar 

  36. D.B.M. Dickerscheid, U. Al Khawaja, D. van Oosten, H.T.C. Stoof, Phys. Rev. A 71, 043604 (2005).

    Article  ADS  Google Scholar 

  37. Kun Huang, Zeng-Qiang Yu, Lan Yin, Phys. Rev. A 79, 053602 (2009).

    Article  ADS  Google Scholar 

  38. S.J.J.M.F. Kokkelmans, M.J. Holland, Phys. Rev. Lett. 89, 180401 (2002).

    Article  ADS  Google Scholar 

  39. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, first edition (Cambridge University Press, 2002).

  40. C.S. Chuu, F. Schreck, T.P. Meyrath, J.L. Hanssen, G.N. Price, M.G. Raizen, Phys. Rev. Lett. 95, 260403 (2005).

    Article  ADS  Google Scholar 

  41. T. Schumm, P. Krüger, S. Hofferberth, I. Lesanovsky, S. Wildermuth, S. Groth, I. Bar-Joseph, L.M. Andersson, J. Schmiedmayer, Quantum Inf. Process. 5, 537 (2006).

    Article  MATH  Google Scholar 

  42. Anthony James Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, first edition (Oxford University Press, USA, 2006).

  43. Shuhong Chen, Boling Guo, J. Math. Phys. 51, 033507 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  44. Takahiko Miyakawa, Pierre Meystre, Phys. Rev. A 74, 043615 (2006).

    Article  ADS  Google Scholar 

  45. Steven Henry Strogatz, Nonlinear Dynamics and Chaos (Perseus Books Publishing, 1994).

  46. Jakob Reichel, Vladan Vuletic, Atom Chips (Wiley-VCH, 2011) Chapt. 12.

  47. A. Emmert, A. Lupascu, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Eur. Phys. J. D 51, 173 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analabha Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A. Dynamics of quantum quenching for BCS-BEC systems in the shallow-BEC regime. Eur. Phys. J. Plus 127, 34 (2012). https://doi.org/10.1140/epjp/i2012-12034-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12034-x

Keywords

Navigation