Skip to main content
Log in

Nonlinear Kelvin-Helmholtz instability of Rivlin-Ericksen viscoelastic electrified fluid-particle mixtures saturating porous media

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear electrohydrodynamic Kelvin-Helmholtz instability of two superposed semi-infinite Rivlin-Ericksen viscoelastic dielectric fluids streaming through porous media in the presence of suspended particles is investigated in three dimensions. The method of multiple scales is used to derive a nonlinear Schrödinger equation with complex coefficients. The linear and nonlinear stability conditions are obtained and discussed both analytically and numerically. The limiting cases of linear results recovered the previous studies. For the nonlinear two-dimensional case, we found that the system is always unstable and this instability decreases by increasing the medium permeability, the surface tension, and the porosity of the porous medium; while it increases by increasing fluid velocities, viscosities, viscoelasticities, electric field, and number densities of particles. Also, in the nonlinear three-dimensional case, we found that the medium permeability and the porosity of the porous medium have stabilizing effects, and the fluid velocities, viscoelasticities, surface tension, and electric field have destabilizing effects; while the number densities of particles and viscosities have no effect on the stability of the system. In the latter case, the dimension has different effects depending on increasing various parameters individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 1981).

  2. P.G. Drazin, Introduction to Hydrodynamic Stability (Cambridge University Press, Cambridge, 2002).

  3. A.H. Nayfeh, W.S. Saric, J. Fluid Mech. 55, 311 (1972).

    Article  ADS  MATH  Google Scholar 

  4. M.A. Weissman, Phil. Trans. R. Soc. A 290, 639 (1979).

    Article  ADS  MATH  Google Scholar 

  5. D.H. Michael, Proc. Cambridge Philos. Soc. 61, 569 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  6. V.I. Palaniswamy, C.M. Purushotham, Phys. Fluids 24, 1224 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. F.A.L. Dullien, Fluid Transport and Pore Structure (Academic Press, New York, 1992).

  8. D.B. Ingham, I. Pop (Editors), Transport Phenomena in Porous Media (Pergamon Press, Oxford, 1998).

  9. R.C. Sharma, T.J.T. Spanos, Can. J. Phys. 60, 1391 (1982).

    Article  ADS  Google Scholar 

  10. R.C. Sharma, N.D. Sharma, Czech. J. Phys. 42, 907 (1992).

    Article  ADS  MATH  Google Scholar 

  11. H.H. Bau, Phys. Fluids 25, 1719 (1982).

    Article  ADS  MATH  Google Scholar 

  12. A. Khan, S.S. Tak, P. Patni, Turkish J. Eng. Env. Sci. 34, 59 (2010).

    Google Scholar 

  13. K. Vafai (Editor), Handbook of Porous Media (Marcel Dekker, New York, 2000).

  14. I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media (Pergamon Press, Oxford, 2001).

  15. D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edition (Springer-Verlag, Berlin, 2006).

  16. I.D. Landau, E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1960).

  17. J.R. Melcher, Continuum Electromechanics (MIT Press, Cambridge, 1981).

  18. D.J. Griffiths, Introduction to Electrohydrodynamics, 3rd edition (Pearson Education, Delhi, 2006).

  19. M.F. El-Sayed, Can. J. Phys. 75, 499 (1997).

    Article  ADS  Google Scholar 

  20. M.F. El-Sayed, Physica A 255, 1 (1998).

    Article  Google Scholar 

  21. M.F. El-Sayed, Czech. J. Phys. 49, 473 (1999).

    Article  ADS  MATH  Google Scholar 

  22. A.A. Mohamed, E.F. Elshehawey, M.F. El-Sayed, J. Colloid Interface Sci. 169, 65 (1995).

    Article  Google Scholar 

  23. E.F. Elshehawey, Quart. Appl. Math. 43, 483 (1986).

    MathSciNet  ADS  Google Scholar 

  24. A.R.F. Elhefnawy, Int. J. Eng. Sci. 40, 319 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. M.F. El-Sayed, Eur. Phys. J. B 37, 241 (2004).

    Article  ADS  Google Scholar 

  26. M.F. El-Sayed, Arch. Appl. Mech. 78, 663 (2008).

    Article  ADS  MATH  Google Scholar 

  27. M.F. El-Sayed, Math. Comput. Simul. 79, 242 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  28. G.M. Moatimid, Y.O. El-Dib, Physica A 333, 41 (2004).

    Article  ADS  Google Scholar 

  29. M.F. El-Sayed, G.M. Moatimid, T.M.N. Metwaly, Transp. Porous Med. 86, 559 (2011).

    Article  MathSciNet  Google Scholar 

  30. A.J. Del Rio, S. Whitaker, Transp. Porous Med. 44, 385 (2001).

    Article  Google Scholar 

  31. M.F. El-Sayed, Chaos, Solitons Fractals 14, 1137 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

  33. R.K. Singla, R.K. Chhabra, S.K. Trehan, Z. Naturforsch. A 51, 10 (1996).

    Google Scholar 

  34. M.-F. Liu, T.-P. Chang, Math. Probl. Eng. 2010, 385742 (2010).

    Google Scholar 

  35. M.F. El-Sayed, Eur. Phys. J. E 15, 443 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M.F., Eldabe, N.T., Haroun, M.H. et al. Nonlinear Kelvin-Helmholtz instability of Rivlin-Ericksen viscoelastic electrified fluid-particle mixtures saturating porous media. Eur. Phys. J. Plus 127, 29 (2012). https://doi.org/10.1140/epjp/i2012-12029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12029-7

Keywords

Navigation