Skip to main content
Log in

Splitting of degenerate states in one-dimensional quantum mechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A classic “no-go” theorem in one-dimensional quantum mechanics can be evaded when the potentials are unbounded below, thus allowing for novel parity-paired degenerate energy bound states. We numerically determine the spectrum of one such potential and study the parametric variation of the transition wavelength between a bound state lying inside the valley of the potential and another, von Neumann-Wigner-like state, appearing above the potential maximum. We then construct a modified potential which is bounded below except when a parameter is tuned to vanish. We show how the spacing between certain energy levels gradually decreases as we tune the parameter to approach the value for which unboundedness arises, thus quantitatively linking the closeness of degeneracy to the steepness of the potential. Our results are generic to a large class of such potentials. Apart from their conceptual interest, such potentials might be realisable in mesoscopic systems thus allowing for the experimental study of the novel states. The numerical spectrum in this study is determined using the asymptotic iteration method which we briefly review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann, E. Wigner, Phys. Z. 30, 465 (1929)

    Google Scholar 

  2. F.H. Stillinger, D.R. Herrick, Phys. Rev. A 11, 446 (1975)

    Article  ADS  Google Scholar 

  3. F. Capasso, C. Sirtori, J. Faist, D.L. Sivco, S.N.G. Chu, A.Y. Cho, Nature 358, 565 (1992)

    Article  ADS  Google Scholar 

  4. S. Kar, R. Parwani, EPL 80, 30004 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Koley, S. Kar, Phys. Lett. A 363, 369 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamom Press, Oxford, 1977) p. 60

  7. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. F.M. Fernandez, J. Phys. A: Math. Gen. 37, 6173 (2004)

    Article  ADS  MATH  Google Scholar 

  10. H.-T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Phys. Rev. D 80, 064022 (2009)

    Article  ADS  Google Scholar 

  11. H.-T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Class. Quantum Grav. 27, 155004 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. R.L. Hall, N. Saad, K.D. Sen, J. Phys. A: Math. Theor. 44, 185307 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  13. A.J. Sous, M.I. El-Kawni, Int. J. Mod. Phys. A 24, 4169 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. H.-T. Cho, C.-L. Ho, J. Phys. A: Math. Theor. 41, 172002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Capasso, J. Faist, C. Sirtori, J. Math. Phys. 37, 4775 (1996)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutt, A., Nath, T., Kar, S. et al. Splitting of degenerate states in one-dimensional quantum mechanics. Eur. Phys. J. Plus 127, 28 (2012). https://doi.org/10.1140/epjp/i2012-12028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12028-8

Keywords

Navigation