Skip to main content
Log in

Classical billiards and double-slit quantum interference

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We carry out a numerical simulation about the occurrence of interference fringes in experiments where an initial Gaussian wave packet evolves inside a billiard domain with two slits on the boundary. Our simulation extends a previous work by Casati and Prosen and it is aimed to test their surprising result that the classical chaos of the billiards causes the disappearance of the fringes. Our investigation reveals a more complex phenomenon. Actually, we find out another factor that influences the interference patterns as well: a symmetry condition concerning the experimental set-up. This condition plays a very important role on its own. Indeed, irrespective of the classical integrability of the billiards, when it is verified the phase difference of the wave function at the slits is always zero, whereas when it is violated a varied dephasing at the slits is always present. We explain the respective roles of our symmetry condition and of classical chaos, by specifying the physical mechanism through which they influence the interference patterns. In particular, this mechanism depends both on the position and direction of the initial wave packet and on certain its recurrences which occur especially in the regular billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Casati, T. Prosen, Phys. Rev. A 72, 032111 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  2. M.V. Berry, Proc. R. Soc. London, Ser. A 413, 183 (1987)

    Article  ADS  Google Scholar 

  3. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990)

  4. F. Haake, Quantum Signature of Chaos, 2nd edition (Springer, Berlin, 2001)

  5. Z. Levnajić, T. Prosen, Chaos 20, 043118 (2010)

    Article  ADS  Google Scholar 

  6. Y. Tang, Y. Shen, J. Yang, X. Liu, J. Zi, B. Li, Phys. Rev. E 78, 047201 (2008)

    Article  ADS  Google Scholar 

  7. S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Inarte, A. Richter, F. Schafer, Phys. Rev. E 84, 016221 (2011)

    Article  ADS  Google Scholar 

  8. G. Fonte, B. Zerbo (2006), arXiv: quant-ph/0609132v1

  9. M. Reed, B. Simon, Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975)

  10. M. Schechter, Operator Methods in Quantum Mechanics (North Holland, New York, 1981)

  11. J. Maestri, R. Landau, M. Pàez, Am. J. Phys. 68, 1113 (2000)

    Article  ADS  Google Scholar 

  12. R.W. Robinett, Phys. Rep. 392, 1 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Tomosovic, J.H. Lefebvre, Phys. Rev. Lett. 79, 3629 (1997)

    Article  ADS  Google Scholar 

  14. B.S. Helmkamp, D.A. Browne, Phys. Rev. E 49, 1831 (1994)

    Article  ADS  Google Scholar 

  15. L.E. Ballantine, Yumin Yang, J.P. Zibin, Phys. Rev. A 50, 2854 (1994)

    Article  ADS  Google Scholar 

  16. L.E. Ballantine, S.M. McRae, Phys. Rev. A 58, 1799 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonte, G., Zerbo, B. Classical billiards and double-slit quantum interference. Eur. Phys. J. Plus 127, 8 (2012). https://doi.org/10.1140/epjp/i2012-12008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12008-0

Keywords

Navigation