Skip to main content
Log in

General symmetries: From homogeneous thermodynamics to black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the topic of symmetries as classifying tools for thermodynamic systems. We adopt the contact geometry approach, in a general framework including standard homogeneous thermodynamics but not limited to it, and we focus our attention on the problem of the existence of a general symmetry, to be defined as a symmetry which is the same for a class of thermodynamic systems. Homogeneity symmetry of standard equilibrium thermodynamics is the paradigmatic example of general symmetry, and we point out its being associated with a multi-class thermodynamics, whose mathematical characterization is taken into account. Furthermore, quasi-homogeneity symmetry, which describes some non-extensive systems, is shown to give rise to a general symmetry, in the above sense, in the case of non-relativistic self-gravitating fermions. In the latter case, it is also conjectured to give rise to a multi-class structure. An analysis of the behavior of transversal symmetries under the partial Legendre involutions enhances a special role of quasi-homogeneity symmetry, as well as the role of special thermodynamic limit is pointed out as a tool for investigating the topic of general symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hermann, Geometry, Systems and Physics (Marcel Dekker, New York, 1973)

  2. R. Mrugała, J.D. Nulton, J.Ch. Schön, P. Salamon, Rep. Math. Phys. 29, 109 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. F. Belgiorno, Nontrivial symmetries of $\deq$ and equilibrium thermodynamics, in New Topics in Mathematical Physics Research (Nova Publishers, Hauppauge, 2009)

  4. F. Belgiorno, J. Math. Phys. 44, 1089 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W.L. Burke, Applied Differential Geometry (Cambridge University Press, Cambridge, 1985)

  6. V.I. Arnold, Proceedings of the 150th Anniversary Gibbs Symposium (New Haven, CT), edited by D.G. Cali, G.D. Mostow (American Mathematical Society, Providence, 1989) p. 163

  7. V.I. Arnold, A.B. Givental’, Symplectic Geometry, in Dynamical Systems IV, second edition, edited by V.I. Arnold, S.P. Novikov, Encyclopaedia of Mathematical Sciences, vol. 4 (Springer, Berlin, 2001) p. 73

  8. R. Mrugała, Geometrical Methods in Thermodynamics, in Thermodynamics of Energy Conversion and Transport, edited by S. Sieniutycz, A. De Vos (Springer, Berlin, 2000) p. 257

  9. R. Balian, P. Valentin, Eur. Phys. J. B 21, 269 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  10. D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds (Birkhäuser, Boston, 2002)

  11. P. Libermann, Ch.-M. Marle, Symplectic Geometry and Analytical Mechanics (Reidel, Dordrecht, 1987)

  12. I.S. Krasil’schchik, A.M. Vinogradov (Editors), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, vol. 182 (American Mathematical Society, Providence, Rhode Island, 1999)

  13. M. Giaquinta, S. Hildebrandt, Calculus of Variations, vol. 2, The Hamiltonian Formalism (Springer, Berlin, 1996)

  14. M. Chen, J. Math. Phys. 40, 830 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Chen, J. Math. Phys. 42, 2531 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M. Chen, J. Phys. A 36, 4717 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Chen, H.C. Tseng, J. Math. Phys. 39, 329 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Mrugała, J. Phys. A 38, 10905 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. Mrugała, J.D. Nulton, J.Ch. Schön, P. Salamon, Phys. Rev. A 41, 3156 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Mrugała, Rep. Math. Phys. 38, 339 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. G. Hernández, E.A. Lacomba, Differ. Geom. Appl. 8, 205 (1998)

    Article  MATH  Google Scholar 

  22. H. Quevedo, J. Math. Phys. 48, 013506 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Vazquez, H. Quevedo, A. Sanchez, J. Geom. Phys. 60, 1942 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E.H. Lieb, J. Yngvason, Phys. Rep. 310, 1 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. P.T. Landsberg, D. Tranah, Phys. Lett. A 78, 219 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Katz, Found. Phys. 33, 223 (2003)

    Article  MathSciNet  Google Scholar 

  27. W. Thirring, A Course in Mathematical Physics, vol. 4, Quantum Mechanics of Large Systems (Springer-Verlag, New York, 1980)

  28. W. Thirring, Found. Phys. 20, 1103 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. P.T. Landsberg, J. Stat. Phys. 35, 159 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  30. D.G.B. Edelen, Applied Exterior Calculus, revised edition (Dover, Mineola, 2005)

  31. R. Mrugała, Rep. Math. Phys. 33, 149 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. F. Belgiorno, Nuovo Cimento B 125, 271 (2010)

    MathSciNet  Google Scholar 

  33. D.J. Saunders, The Geometry of Jet Bundles, in London Mathematical Society Lecture Note Series, vol. 142 (Cambridge University Press, Cambridge, 1989)

  34. P.T. Landsberg, Thermodynamics with Quantum Statistical Illustrations (Interscience Publishers, New York, 1961)

  35. P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)

  36. A.S. Wightman, in R.B. Israel, Convexity in the Theory of Lattice Gases, Princeton Series in Physics (Princeton University Press, Princeton, 1979)

  37. L. Galgani, A. Scotti, Proceedings of the International Conference on Thermodynamics, Cardiff, edited by P.T. Landsberg (Butterworths, London, 1970) p. 229

  38. P.T. Landsberg, Proceedings of the International Conference on Thermodynamics, Cardiff, edited by P.T. Landsberg (Butterworths, London, 1970) p. 215

  39. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

  40. A. Hankey, H.E. Stanley, Phys. Rev. B 6, 3515 (1972)

    Article  ADS  Google Scholar 

  41. F. Belgiorno, Phys. Lett. A 312, 324 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. P. Hertel, H. Narnhofer, W. Thirring, Commun. Math. Phys. 28, 159 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  43. E.A. Power, John A. Wheeler, Rev. Mod. Phys. 29, 480 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. P.H. Chavanis, M. Rieutord, Astron. Astrophys. 412, 1 (2003)

    Article  ADS  Google Scholar 

  45. J. Messer, Temperature Dependent Thomas-Fermi Theory, in Lect. Notes Phys., vol. 147 (Springer-Verlag, Berlin, 1981)

  46. R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, second edition, Appl. Math. Sci., vol. 75 (Springer, Berlin-Verlag, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Belgiorno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belgiorno, F., Cacciatori, S.L. General symmetries: From homogeneous thermodynamics to black holes. Eur. Phys. J. Plus 126, 86 (2011). https://doi.org/10.1140/epjp/i2011-11086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11086-8

Keywords

Navigation