Skip to main content
Log in

HPM for the slip velocity effect on a liquid film over an unsteady stretching surface with variable heat flux

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article presents a numerical solution for the unsteady slip velocity flow of a thin viscous liquid film over a heated horizontal stretching surface in the presence of variable heat flux. Similarity transformations are used to transform the governing equations to a set of coupled non-linear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM). The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).

    Article  Google Scholar 

  2. P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977).

    Article  Google Scholar 

  3. B.K. Dutta, A.S. Gupta, Ind. Eng. Chem. Res. 26, 333 (1987).

    Article  Google Scholar 

  4. L.J. Grubka, K.M. Bobba, J. Heat Transfer 107, 248 (1985).

    Article  Google Scholar 

  5. C.K. Chen, M. Char, J. Math. Anal. Appl. 35, 568 (1988).

    Article  MathSciNet  Google Scholar 

  6. M.E. Ali, Waerme-Stoffuebertrag. 29, 227 (1994).

    Article  ADS  Google Scholar 

  7. K. Vajravelu, J. Math. Anal. Appl. 188, 1002 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Pop, T. Na, Mech. Res. Commun. 23, 413 (1996).

    Article  MATH  Google Scholar 

  9. S. Bhattacharyya, A. Pal, A.S. Gupta, Heat Mass Transfer 34, 41 (1998).

    Article  ADS  Google Scholar 

  10. T.R. Mahapatra, A.S. Gupta, Can. J. Chem. Eng. 81, 258 (2003).

    Article  Google Scholar 

  11. A. Yoshimura, R.K. Prudhomme, J. Rheol. 32, 53 (1998).

    Article  Google Scholar 

  12. G.S. Beavers, D.D. Joseph, J. Fluid Mech. 30, 197 (1967).

    Article  ADS  Google Scholar 

  13. I.J. Rao, K.R. Rajagopal, Acta Mech. 135, 113 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. P.D. Ariel, Z. Angew. Math. Mech. 88, 320 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. C.Y. Wang, Chem. Eng. Sci. 57, 3745 (2002).

    Article  Google Scholar 

  16. Z.Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int. J. Numer. Meth. Fluids 59, 443 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. A.A.M. Mostafa, Math. Comput. Model. 54, 1228 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. C.Y. Wang, Quart. Appl. Math. XLVIII, 601 (1990).

    Google Scholar 

  19. H.I. Andersson, J.B. Aarseh, B.S. Dandapat, Int. J. Heat Mass Transfer 43, 69 (2000).

    Article  MATH  Google Scholar 

  20. C. Wang, Heat Mass Transfer 42, 759 (2006).

    Article  ADS  Google Scholar 

  21. C. Wang, I. Pop, J. Non-Newtonian Fluid Mech. 138, 161 (2006).

    Article  MATH  Google Scholar 

  22. B.S. Dandapat, B. Santra, K. Vajravelu, Int. J. Heat Mass Transfer 50, 991 (2007).

    Article  MATH  Google Scholar 

  23. M.A.A. Mahmoud, A.M. Megahed, Can. J. Phys. 87, 1065 (2009).

    Article  ADS  Google Scholar 

  24. N.F.M. Noor, I. Hashim, Int. J. Heat Mass Transfer 53, 2044 (2010).

    Article  MATH  Google Scholar 

  25. J.H. He, Phys. Lett. A 350, 87 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D.D. Ganji, Phys. Lett. A 355, 337 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. Biazar, H. Ghazvini, Nonlinear Anal.: Real World Appl. 10, 2633 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Biazar, H. Ghazvini, Appl. Math. Comput. 195, 681 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Megahed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megahed, A.M. HPM for the slip velocity effect on a liquid film over an unsteady stretching surface with variable heat flux. Eur. Phys. J. Plus 126, 82 (2011). https://doi.org/10.1140/epjp/i2011-11082-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11082-0

Keywords

Navigation