Skip to main content
Log in

Eigenvalue problem in two dimensions for an irregular boundary: Neumann condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We formulate a systematic elegant perturbative scheme for determining the eigenvalues of the Helmholtz equation (∇2 + k 2)\( \psi\) = 0 in two dimensions when the normal derivative of \( \psi\) vanishes on an irregular closed curve. The unique feature of this method, unlike other perturbation schemes, is that it does not require a separate formalism to treat degeneracies. Degenerate states are handled equally elegantly as the non-degenerate ones. A real parameter, extracted from the parameters defining the irregular boundary, serves as a perturbation parameter in this scheme as opposed to earlier schemes where the perturbation parameter is an artificial one. The efficacy of the proposed scheme is gauged by calculating the eigenvalues for elliptical and supercircular boundaries and comparing with the results obtained numerically. We also present a simple and interesting semi-empirical formula, determining the eigenspectrum of the 2D Helmholtz equation with the Dirichlet or the Neumann condition for a supercircular boundary. A comparison of the eigenspectrum for several low-lying modes obtained by employing the formula with the corresponding numerical estimates shows good agreement for a wide range of the supercircular exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sobchenko, J. Pesicka, D.Baither, R. Reichelt, E. Nembach, Appl. Phys. Lett. 89, 133107 (2006)

    Article  ADS  Google Scholar 

  2. N. Bera, J.K. Bhattacharjee, S. Mitra, S.P. Khastgir, Eur. Phys. J. D 46, 41 (2008)

    Article  ADS  Google Scholar 

  3. S. Chakraborty, J.K. Bhattacharjee, S.P. Khastgir, J. Phys. A: Math. Gen. 42, 195301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Lis, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003)

    Article  ADS  Google Scholar 

  5. P.S. Drouvelis, P. Schmelcher, F.K. Diakonos, Phys. Rev. B 69, 155312 (2004)

    Article  ADS  Google Scholar 

  6. I. Magnúsdóttir, V. Gudmundsson, Phys. Rev. B 60, 16591 (1999)

    Article  ADS  Google Scholar 

  7. M. Kac, Am. Math. Mon. 73, 1 (1966)

    Article  MATH  Google Scholar 

  8. C. Gordon, D. Webb, S. Wolpert, Invent. Math. 110, 1 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. E. Doron, U. Smilansky, Nonlinearity 5, 1055 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. B. Dietz, U. Smilansky, Chaos 3, 581 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. M.V. Berry, J. Phys. A: Math. Gen. 27, L391 (1994)

    Article  ADS  MATH  Google Scholar 

  12. J.P. Eckmann, C.A. Pillet, Commun. Math. Phys. 170, 283 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. Tasaki, T. Harayama, A. Shudo, Phys. Rev. E 56, 13 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Okada, A. Shudo, S. Tasaki, T. Harayama, J. Phys. A: Math. Gen. 38, L163 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. H.R. Krishnamurthy, H.S. Mani, H.C. Verma, J. Phys. A: Math. Gen. 15, 2131 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Mazumdar, Shock Vibr. Dig. 7, 75 (1975)

    Google Scholar 

  17. J. Mazumdar, Shock Vibr. Dig. 11, 25 (1979)

    Article  Google Scholar 

  18. J. Mazumdar, Shock Vibr. Dig. 14, 11 (1982)

    Article  Google Scholar 

  19. J.R. Kuttler, V.G. Sigillito, SIAM Rev. 26, 163 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Amore, J. Phys. A: Math. Theor. 41, 265206 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Amore, J. Math. Phys. 51, 052105 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. R.C.T. George, P.R. Shaw, J. Acoust. Soc. Am. 56, 796 (1974)

    Article  Google Scholar 

  23. H.B. Wilson, R.W. Scharstein, J. Eng. Math. 57, 1 (2007)

    Article  MathSciNet  Google Scholar 

  24. R. Hettich, E. Haaren, M. Ries, G. Still, J. Appl. Math. Mech. 67, 589 (1987)

    MATH  MathSciNet  Google Scholar 

  25. B.A. Troesch, H.R. Troesch, Math. Comput. 27, 24 (1973)

    Google Scholar 

  26. D.L. Kaufman, I. Kosztin, K. Schulten, Am. J. Phys. 67, 133 (1998)

    Article  ADS  Google Scholar 

  27. E. Vergini, M. Saraceno, Phys. Rev. E 52, 2204 (1995)

    Article  ADS  Google Scholar 

  28. D. Cohen, N. Lepore, E.J. Heller, J. Phys. A: Math. Theor. 37, 2139 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. I. Kosztin, K. Schulten, Int. J. Mod. Phys. C 8, 233 (1997)

    Article  MathSciNet  Google Scholar 

  30. M. Robnik, J. Phys. A: Math. Theor. 17, 1049 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. E. Lijnen, L.F. Chibotaru, A. Ceulemans, Phys. Rev. E 77, 016702 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. J.W.S.B. Rayleigh, Theory of Sound, 2nd edition (Dover, New York, 1945)

  33. A.L. Fetter, J.D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw Hill Book Company, 1980)

  34. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. 2 (McGraw Hill Book Company, 1983)

  35. R.G. Parker, C.D. Mote Jr., J. Sound Vibr. 211, 389 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.H. Nayfeh, Introduction to Perturbation Techniques (J. Wiley, N.Y., 1981)

  37. W.W. Read, Math. Comput. Model. 24, 23 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Y. Wu, P.N. Shivakumar, Comput. Math. Appl. 55, 1129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Molinari, J. Phys. A. Math. Gen. 30, 6517 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, C. Schmit, Phys. Rev. A 77, 013804 (2008)

    Article  ADS  Google Scholar 

  41. M. Gardner, Piet Hein’s Superellipse, Mathematical Carnival: A new Round-Up of Tantalizers and Puzzles from Scientific American (Vintage, N.Y., 1977) Chapt. 18, pp. 240--254

  42. N.T. Gridgeman, Lamé Ovals, Math. Gaz. 54, 31 (1970)

    Article  MATH  Google Scholar 

  43. K. Gottfried, T. Yan, Quantum Mechanics: Fundamentals, 2nd edition (Springer, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, S., Chakraborty, S. & Khastgir, S.P. Eigenvalue problem in two dimensions for an irregular boundary: Neumann condition. Eur. Phys. J. Plus 126, 62 (2011). https://doi.org/10.1140/epjp/i2011-11062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11062-4

Keywords

Navigation