Skip to main content
Log in

Turbulence and coherent structures in non-neutral plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Electron plasmas confined in Penning-Malmberg traps evolve as near-ideal two-dimensional (2D) fluids, allowing a quantitative study of shear flow instabilities, vortex formation, turbulence, and self-organization. At first, an overview of the main physical properties of non-neutral plasmas is briefly presented, and the characteristics and mode of operation of their confinement devices are described. The 2D model for the transverse plasma dynamics is explicitly derived, and its main features and limits of validity are critically discussed. The attention is then focused on the free relaxation of 2D turbulence, with a short review of recent experiments and theoretical analyses. Experimental results on the dynamics of the 2D turbulence in pure electron plasmas obtained in the Penning-Malmberg trap ELTRAP are reported. Different initial electron distributions, leading to different relaxed states, are considered. The dynamics is investigated by means of the Proper Orthogonal Decomposition technique. The analysis enables to identify the coherent structures which give the dominant contribution to the plasma turbulent evolution. Finally, the scaling properties of 2D turbulence are analyzed, showing that intermittency increases as the turbulence evolution proceeds, due to the development of strong fluctuations which give rise to non-Gaussian tails in the probability distribution functions of vorticity increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bengtsson, J. Lighthill (Editors), Intense Atmospheric Vortices (Springer-Verlag, Berlin, 1999)

  2. W.K. Dewar, P. Killworth, J. Phys. Oceanogr. 20, 1563 (1990)

    Article  ADS  Google Scholar 

  3. D.B. Olson, Annu. Rev. Earth Planet. Sci. 19, 283 (1991) doi:10.1146/annurev.ea.19.050191.001435

    Article  ADS  Google Scholar 

  4. A.P. Ingersoll, Science 248, 308 (1990) doi:10.1126/science.248.4953.308

    Article  ADS  Google Scholar 

  5. S. Kwok, Ann. Rev. Astron. Astrophys. 31, 63 (1993) doi:10.1146/annurev.aa.31.090193.000431

    Article  MathSciNet  ADS  Google Scholar 

  6. J.E. Pringle, Ann. Rev. Astron. Astrophys. 19, 137 (1981) doi:10.1146/annurev.aa.19.090181.001033

    Article  ADS  Google Scholar 

  7. M.A. Abramowicz, A. Lanza, E.A. Spiegel et al., Nature 356, 41 (1992) doi:10.1038/356041a0

    Article  ADS  Google Scholar 

  8. C.N. Baroud, B.B. Plapp, Z. She et al., Phys. Rev. Lett. 88, 114501 (2002) doi:10.1103/PhysRevLett.88.114501

    Article  ADS  Google Scholar 

  9. M.A. Rutgers, Phys. Rev. Lett. 81, 2244 (1998) doi:10.1103/PhysRevLett.81.2244

    Article  ADS  Google Scholar 

  10. J. Paret, P. Tabeling, Phys. Rev. Lett. 79, 4162 (1997) doi:10.1103/PhysRevLett.79.4162

    Article  ADS  Google Scholar 

  11. M. Rivera, P. Vorobieff, R.E. Ecke, Phys. Rev. Lett. 81, 1417 (1998) doi:10.1103/PhysRevLett.81.1417

    Article  ADS  Google Scholar 

  12. J.H. Malmberg, J.S. deGrassie, Phys. Rev. Lett. 35, 577 (1975) doi:10.1103/PhysRevLett.35.577

    Article  ADS  Google Scholar 

  13. R.C. Davidson, An Introduction to the Physics of Nonneutral Plasmas (Addison-Wesley, Redwood City, 1990)

  14. T.M. O’Neil, Phys. Scripta T59, 341 (1995) doi:10.1088/0031-8949/1995/T59/047

    Article  ADS  Google Scholar 

  15. T.M. O’Neil, Phys. Today 52, 24 (1999) doi:10.1063/1.882521

    Article  Google Scholar 

  16. J.S. deGrassie, J.H. Malmberg, Phys. Fluids 23, 63 (1980) doi:10.1063/1.862864

    Article  ADS  Google Scholar 

  17. C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988) doi:10.1103/PhysRevLett.60.1290

    Article  ADS  Google Scholar 

  18. L.R. Brewer, J.D. Prestage, J.J. Bollinger et al., Phys. Rev. A 38, 859 (1988) doi:10.1103/PhysRevA.38.859

    Article  ADS  Google Scholar 

  19. S.L. Gilbert, J.J. Bollinger, D.J. Wineland, Phys. Plasmas 1, 1403 (1994) doi:10.1063/1.870690

    Article  ADS  Google Scholar 

  20. C.M. Surko, T.J. Murphy, Phys. Fluids B 2, 1372 (1990) doi:10.1063/1.859558

    Article  ADS  Google Scholar 

  21. R.G. Greaves, M.D. Tinkle, C.M. Surko, Phys. Plasmas 1, 1439 (1994) doi:10.1063/1.870693

    Article  ADS  Google Scholar 

  22. G. Gabrielse, X. Fei, K. Helmerson et al., Phys. Rev. Lett. 57, 2504 (1986) doi:10.1103/PhysRevLett.57.2504

    Article  ADS  Google Scholar 

  23. M.H. Holzscheiter, X. Feng, T. Goldman et al., Phys. Lett. A 214, 279 (1996) doi:10.1016/0375-9601(96)00189-2

    Article  ADS  Google Scholar 

  24. R.G. Greaves, C.M. Surko, Phys. Plasmas 4, 1528 (1997) doi:10.1063/1.872284

    Article  ADS  Google Scholar 

  25. R.B. Miller, An Introduction to the Physics of Intense Charged Particle Beams (Plenum Press, New York, 1982)

  26. J.D. Lawson, The Physics of Charged Particle Beams (Clarendon Press, Oxford, 1988)

  27. R.C. Davidson, H.Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001)

  28. R.C. Davidson, H.-W. Chan, C. Chen et al., Rev. Mod. Phys. 63, 341 (1991) doi:10.1103/RevModPhys.63.341

    Article  ADS  Google Scholar 

  29. R.C. Davidson, Phys. Plasmas 5, 3459 (1998) doi:10.1063/1.873059

    Article  MathSciNet  ADS  Google Scholar 

  30. R.C. Davidson, J. Plasma Phys. 6, 229 (1971) doi:10.1017/S0022377800025812

    Article  ADS  Google Scholar 

  31. X.-P. Huang, F. Anderegg, E. Hollmann et al., Phys. Rev. Lett. 78, 875 (1997) doi:10.1103/PhysRevLett.78.875

    Article  ADS  Google Scholar 

  32. E.H.F. Anderegg, C. Driscoll, Phys. Plasmas 7, 2776 (2000) doi:10.1063/1.874128

    Article  ADS  Google Scholar 

  33. M. Romé, M. Brunetti, F. Califano et al., Phys. Plasmas 7, 2856 (2000) doi:10.1063/1.874135

    Article  MathSciNet  ADS  Google Scholar 

  34. G.W. Mason, R.L. Spencer, Phys. Plasmas 9, 3217 (2002) doi:10.1063/1.1488600

    Article  ADS  Google Scholar 

  35. G. Delzanno, G. Lapenta, J. Finn, IEEE Trans. Plasma Sci. 30, 34 (2002) doi:10.1109/TPS.2002.1003910

    Article  ADS  Google Scholar 

  36. Yu. Tsidulko, R. Pozzoli, M. Romé, J. Comp. Phys. 209, 406 (2005) doi:10.1016/j.jcp.2005.03.013

    Article  ADS  MATH  Google Scholar 

  37. R.G. Lefrancois, T.S. Pedersen, A.H. Boozer et al., Phys. Plasmas 12, 072105 (2005) doi:10.1063/1.1928248

    Article  ADS  Google Scholar 

  38. K. Gomberoff, J. Wurtele, A. Friedman et al., J. Comput. Phys. 225, 1736 (2007) doi:10.1016/j.jcp.2007.02.029

    Article  ADS  MATH  Google Scholar 

  39. D.L. Eggleston, Phys. Plasmas 4, 1196 (1997) doi:10.1063/1.872299

    Article  ADS  Google Scholar 

  40. J.D. Daugherty, J.E. Eninger, G.S. Janes, Phys. Fluids 12, 2677 (1969) doi:10.1063/1.1692411

    Article  ADS  Google Scholar 

  41. T.S. Pedersen, J.P. Kremer, R.G. Lefrancois et al., Fus. Sci. Technol. 50, 372 (2006)

    Google Scholar 

  42. S. Pahari, H.S. Ramachandran, P.I. John, Phys. Plasmas 13, 092111 (2006) doi:10.1063/1.2345584

    Article  ADS  Google Scholar 

  43. H. Himura, H. Wakabayashi, Y. Yamamoto et al., Phys. Plasmas 14, 022507 (2007) doi:10.1063/1.2458548

    Article  ADS  Google Scholar 

  44. M.R. Stoneking, J.P. Marler, B.N. Ha et al., Phys. Plasmas 16, 055708 (2008) doi:10.1063/1.3118624

    Article  ADS  Google Scholar 

  45. Z. Yoshida, H. Saitoh, J. Morikawa et al., Phys. Rev. Lett. 104, 235004 (2010) doi:10.1103/PhysRevLett.104.235004

    Article  ADS  Google Scholar 

  46. S.L. Gilbert, J.J. Bollinger, D.J. Wineland, Phys. Rev. Lett. 60, 2022 (1988) doi:10.1103/PhysRevLett.60.2022

    Article  ADS  Google Scholar 

  47. C.M. Surko, R.G. Greaves, Phys. Plasmas 11, 2333 (2004) doi:10.1063/1.1651487

    Article  ADS  Google Scholar 

  48. T.R. Weber, J.R. Danielson, C.M. Surko, Phys. Plasmas 15, 012106 (2008) doi:10.1063/1.2817967

    Article  ADS  Google Scholar 

  49. T.M. O’Neil, D.H.E. Dubin, Phys. Plasmas 5, 2163 (1998) doi:10.1063/1.872925

    Article  ADS  Google Scholar 

  50. D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999) doi:10.1103/RevModPhys.71.87

    Article  ADS  Google Scholar 

  51. F. Anderegg, X.-P. Huang, C.F. Driscoll et al., Phys. Rev. Lett. 78, 2128 (1997) doi:10.1103/PhysRevLett.78.2128

    Article  ADS  Google Scholar 

  52. D.H.E. Dubin, Phys. Plasmas 5, 1688 (1998) doi:10.1063/1.872837

    Article  ADS  Google Scholar 

  53. E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Rev. Lett. 82, 4839 (1999) doi:10.1103/PhysRevLett.82.4839

    Article  ADS  Google Scholar 

  54. D.L. Eggleston, T.M. O’Neil, J.H. Malmberg, Phys. Rev. Lett. 53, 982 (1984) doi:10.1103/PhysRevLett.53.982

    Article  ADS  Google Scholar 

  55. J. Notte, J. Fajans, Phys. Plasmas 1, 1123 (1994) doi:10.1063/1.870762

    Article  ADS  Google Scholar 

  56. D.L. Eggleston, B.Carrillo, Phys. Plasmas 9, 786 (2002) doi:10.1063/1.1436493

    Article  ADS  Google Scholar 

  57. A.A. Kabantsev, C.F. Driscoll, Phys. Rev. Lett. 89, 245001 (2002) doi:10.1103/PhysRevLett.89.245001

    Article  ADS  Google Scholar 

  58. E. Gilson, J. Fajans, Phys. Rev. Lett. 90, 015001 (2003) doi:10.1103/PhysRevLett.90.015001

    Article  ADS  Google Scholar 

  59. J. Fajans, W. Bertsche, K. Burke et al., Phys. Rev. Lett. 95, 155001 (2003) doi:10.1103/PhysRevLett.95.155001

    Article  ADS  Google Scholar 

  60. D.H.E. Dubin, C.F. Driscoll, Yu.A. Tsidulko, Phys. Rev. Lett. 105, 185003 (2010) doi:10.1103/PhysRevLett.105.185003

    Article  ADS  Google Scholar 

  61. J. Notte, A.J. Peurrung, J. Fajans et al., Phys. Rev. Lett. 69, 3056 (1992) doi:0.1103/PhysRevLett.69.3056

    Article  ADS  Google Scholar 

  62. J. Fajans, E.Yu. Backhaus, J.E. McCarthy, Phys. Plasmas 6, 12 (1999) doi:10.1063/1.873253

    Article  MathSciNet  ADS  Google Scholar 

  63. E.Yu. Backhaus, J. Fajans, J.S. Wurtele, Phys. Plasmas 6, 19 (1999) doi:10.1063/1.873299

    Article  MathSciNet  ADS  Google Scholar 

  64. I. Kotelnikov, M. Romé, Phys. Rev. Lett. 101, 085006 (2008) doi:10.1103/PhysRevLett.101.085006

    Article  ADS  Google Scholar 

  65. I. Kotelnikov, M. Romé, Phys. Plasmas 15, 072118 (2008) doi:10.1063/1.2961074

    Article  ADS  Google Scholar 

  66. F. Driscoll, D.A. Schecter, D.Z. Jin et al., Physica A 263, 284 (1999) doi:10.1016/S0378-4371(98)00495-6

    Article  ADS  Google Scholar 

  67. D. Durkin, J. Fajans, Phys. Fluids 12, 289 (2000) doi:10.1063/1.870307

    Article  ADS  MATH  Google Scholar 

  68. G. Bettega, B. Paroli, R. Pozzoli et al., Meas. Sci. Tech. 19, 085703 (2008) doi:10.1088/0957-0233/19/8/085703

    Article  ADS  Google Scholar 

  69. G. Bettega, F. Cavaliere, B. Paroli et al., Phys. Plasmas 14, 102103 (2007) doi:10.1063/1.2789985

    Article  ADS  Google Scholar 

  70. G. Bettega, F. Cavaliere, B. Paroli et al., Phys. Plasmas 15, 032102 (2008) doi:10.1063/1.2890773

    Article  ADS  Google Scholar 

  71. G. Bettega, B. Paroli, R. Pozzoli et al., J. Appl. Phys. 105, 053303 (2009) doi:10.1063/1.3086619

    Article  ADS  Google Scholar 

  72. D. Durkin, J. Fajans, Rev. Sci. Instrum. 70, 4539 (1999) doi:10.1063/1.1150108

    Article  ADS  Google Scholar 

  73. Y. Kiwamoto, K. Ito, A. Sanpei et al., J. Phys. Soc. Jpn. 68, 3766 (1999) doi:10.1143/JPSJ.68.3766

    Article  ADS  Google Scholar 

  74. M. Amoretti, C. Amsler, G. Bonomi et al., Nature 419, 456 (2002) doi:10.1038/nature01096

    Article  ADS  Google Scholar 

  75. G. Gabrielse, N.S. Bowden, P. Oxley et al., Phys. Rev. Lett. 89, 213401 (2002) doi:10.1103/PhysRevLett.89.213401

    Article  ADS  Google Scholar 

  76. M. Amoretti, G. Bettega, F. Cavaliere et al., Rev. Sci. Instrum. 74, 3991 (2003) doi:10.1063/1.1602931

    Article  ADS  Google Scholar 

  77. B. Paroli, G. Bettega, F. Cavaliere et al., J. Phys. D: Appl. Phys. 42, 175203 (2009) doi:10.1088/0963-0252/19/4/045013

    Article  ADS  Google Scholar 

  78. B. Paroli, G. Bettega, G. Maero et al., Rev. Sci. Instrum. 81, 063503 (2010) doi:10.1063/1.3455200

    Article  ADS  Google Scholar 

  79. R.H. Levy, Phys. Fluids 8, 1288 (1965) doi:10.1063/1.1761400

    Article  MathSciNet  ADS  Google Scholar 

  80. R.J. Briggs, J.D. Dougherty, R.H. Levy, Phys. Fluids 13, 421 (1970) doi:10.1063/1.1692936

    Article  ADS  Google Scholar 

  81. C.F. Driscoll, K.S. Fine, Phys. Fluids B 2, 1359 (1990) doi:10.1063/1.859556

    Article  ADS  Google Scholar 

  82. X.P. Huang, K.S. Fine, C.F. Driscoll, Phys. Rev. Lett. 74, 4424 (1995) doi:10.1103/PhysRevLett.74.4424

    Article  ADS  Google Scholar 

  83. J.M. Finn, D. del-Castillo-Negrete, D.C. Barnes, Phys. Plasmas 6, 3744 (1999) doi:10.1063/1.873637

    Article  MathSciNet  ADS  Google Scholar 

  84. Y. Kawai, Y. Kiwamoto, Y. Soga et al., Phys. Plasmas 14, 102106 (2007) doi:10.1063/1.2793731

    Article  ADS  Google Scholar 

  85. A.W. Trivelpiece, R.W. Gould, J. Appl. Phys. 30, 1784 (1959) doi:10.1063/1.1735056

    Article  ADS  Google Scholar 

  86. S.A. Prasad, T.M. O’Neil, Phys. Fluids 6, 665 (1983) doi:10.1063/1.864181

    Article  ADS  Google Scholar 

  87. R.A. Smith, Phys. Fluids B 4, 287 (1992) doi:10.1063/1.860275

    Article  ADS  Google Scholar 

  88. A.J. Peurrung, J. Fajans, Phys. Fluids B 5, 4295 (1993) doi:10.1063/1.860546

    Article  ADS  Google Scholar 

  89. D.A. Schecter, D.H.E. Dubin, K.S. Fine et al., Phys. Fluids 11, 905 (1999) doi:10.1063/1.869961

    Article  ADS  MATH  Google Scholar 

  90. P.J. Morrison, Phys. Fluids 27, 886 (1984) doi:10.1063/1.864718

    Article  ADS  MATH  Google Scholar 

  91. B.N. Kuvshinov, F. Pegoraro, T.J. Schep, Phys. Lett. A 191, 296 (1994) doi:10.1016/0375-9601(94)90143-0

    Article  ADS  Google Scholar 

  92. E.A. Kuznetsov, V.P. Ruban, Phys. Rev. E 61, 831 (2000) doi:10.1103/PhysRevE.61.831

    Article  MathSciNet  ADS  Google Scholar 

  93. C.E. Leith, Phys. Fluids 11, 671 (1968) doi:10.1063/1.1691968

    Article  ADS  Google Scholar 

  94. M.V. Melander, N.J. Zabusky, J.C. McWilliams, J. Fluid Mech. 195, 303 (1988) doi:10.1017/S0022112088002435

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. J. Miller, P.B. Weichman, M.C. Cross, Phys. Rev. A 45, 2328 (1992) doi:10.1103/PhysRevA.45.2328

    Article  ADS  Google Scholar 

  96. A.J. Peurrung, J. Fajans, Phys. Fluids A 5, 493 (1993) doi:10.1063/1.858872

    Article  ADS  Google Scholar 

  97. K.S. Fine, C.F. Driscoll, J.H. Malmberg et al., Phys. Rev. Lett. 67, 588 (1991) doi:10.1103/PhysRevLett.67.588

    Article  ADS  Google Scholar 

  98. T.B. Mitchell, C.F. Driscoll, Phys. Fluids 8, 1828 (1996) doi:10.1063/1.868965

    Article  ADS  MATH  Google Scholar 

  99. M. Amoretti, D. Durkin, J. Fajans et al., Phys. Plasmas 8, 3865 (2001) doi:10.1063/1.1390331

    Article  ADS  Google Scholar 

  100. D. Durkin, J. Fajans, Phys. Rev. Lett. 85, 4052 (2000) doi:10.1103/PhysRevLett.85.4052

    Article  ADS  Google Scholar 

  101. D.L. Eggleston, Phys. Plasmas 1, 3850 (1995) doi:10.1063/1.870857

    Article  ADS  Google Scholar 

  102. A.J. Peurrung, J. Notte, J. Fajans, J. Fluid Mech. 252, 713 (1993) doi:10.1017/S0022112093003957

    Article  ADS  Google Scholar 

  103. D.A. Schecter, D.H.E. Dubin, Phys. Rev. Lett. 83, 2191 (1999) doi:10.1103/PhysRevLett.83.2191

    Article  ADS  Google Scholar 

  104. D.A. Schecter, D.H.E. Dubin, Phys. Fluids 13, 1704 (2001) doi:10.1063/1.1359763

    Article  ADS  Google Scholar 

  105. T.H. Havelock, Philos. Mag. 11, 617 (1931)

    MATH  Google Scholar 

  106. L. Campbell, R. Ziff, A Catalog of Two-Dimensional Vortex Patterns, Los Alamos Scientific Laboratory Report No. LA-7384-MS (1978)

  107. K.S. Fine, A.C. Cass, W.G. Flynn et al., Phys. Rev. Lett. 75, 3277 (1995) doi:10.1103/PhysRevLett.75.3277

    Article  ADS  Google Scholar 

  108. J. Miller, Phys. Rev. Lett. 65, 2137 (1990) doi:10.1103/PhysRevLett.65.2137

    Article  MathSciNet  ADS  MATH  Google Scholar 

  109. R. Robert, J. Sommeria, J. Fluid Mech. 229, 291 (1991) doi:10.1017/S0022112091003038

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. G.F. Carnevale, J.C. McWilliams, Y. Pomeau et al., Phys. Rev. Lett. 66, 2735 (1991) doi:10.1103/PhysRevLett.66.2735

    Article  ADS  Google Scholar 

  111. J.B. Weiss, J.C. McWilliams, Phys. Fluids A 5, 608 (1993) doi:10.1103/PhysRevA.45.2328

    Article  ADS  MATH  Google Scholar 

  112. D.Z. Jin, D.H.E. Dubin, Phys. Rev. Lett. 80, 4434 (1998) doi:10.1103/PhysRevLett.80.4434

    Article  ADS  Google Scholar 

  113. D.Z. Jin, D.H.E. Dubin, Phys. Rev. Lett. 84, 1443 (2000) doi:10.1103/PhysRevLett.84.1443

    Article  ADS  Google Scholar 

  114. Y. Kiwamoto, K. Ito, A. Sanpei et al., Phys. Scripta T98, 34 (2002) doi:10.1238/Physica.Topical.098a00034

    Article  ADS  Google Scholar 

  115. Y. Soga, Y. Kiwamoto, A. Sanpei et al., Phys. Plasmas 10, 3922 (2003) doi:10.1063/1.1611181

    Article  ADS  Google Scholar 

  116. A. Sanpei, Y. Kiwamoto, K. Ito et al., Phys. Rev. E 68, 016404 (2003) doi:10.1103/PhysRevE.68.016404

    Article  ADS  Google Scholar 

  117. Y. Kiwamoto, J. Aoki, Y. Soga et al., Plasma Phys. Control. Fusion 47, A41 (2005) doi:10.1088/0741-3335/47/5A/004

    Article  ADS  Google Scholar 

  118. Y. Kiwamoto, N. Hashizume, Y. Soga et al., Phys. Rev. Lett. 99, 115002 (2007) doi:10.1103/PhysRevLett.99.115002

    Article  ADS  Google Scholar 

  119. A. Sanpei, K. Ito, Y. Soga et al., Hyperfine Interact. 174, 71 (2007) doi:10.1007/s10751-007-9566-8

    Article  ADS  Google Scholar 

  120. R.H. Kraichnan, Phys. Fluids 10, 1417 (1967) doi:10.1063/1.1762301

    Article  ADS  Google Scholar 

  121. G.K. Batchelor, Phys. Fluids 12, II (1969) doi:10.1063/1.1692443

    Article  Google Scholar 

  122. R.H. Kraichnan, D. Montgomery, Rep. Prog. Phys. 43, 547 (1980) doi:10.1088/0034-4885/43/5/001

    Article  MathSciNet  ADS  Google Scholar 

  123. Y. Kawai, Y. Kiwamoto, Y. Soga et al., Phys. Rev. E 75, 066404 (2007) doi:10.1103/PhysRevE.75.066404

    Article  ADS  Google Scholar 

  124. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  125. Y. Kawai, Y. Kiwamoto, Phys. Rev. E 78, 036401 (2008) doi:10.1103/PhysRevE.78.036401

    Article  ADS  Google Scholar 

  126. G. Bettega, R. Pozzoli, M. Romé, New J. Phys. 11, 052006 (2009) doi:10.1088/1367-2630/11/5/053006

    Article  Google Scholar 

  127. A. Grossman, J. Morlet, SIAM J. Math. Anal. 15, 723 (1984) doi:10.1137/0515056

    Article  MathSciNet  Google Scholar 

  128. M. Farge, Ann. Rev. Fluid Mech. 24, 395 (1992) doi:10.1146/annurev.fl.24.010192.002143

    Article  MathSciNet  ADS  Google Scholar 

  129. S.G. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1999)

  130. A. Siegel, J.B. Weiss, Phys. Fluids 9, 1988 (1997) doi:10.1063/1.869318

    Article  ADS  Google Scholar 

  131. M. Farge, K. Schneider, M. Kevlahan, Phys. Fluids 11, 2187 (1999) doi:10.1063/1.870080

    Article  MathSciNet  ADS  MATH  Google Scholar 

  132. K. Schneider, M. Farge, Phys. Rev. Lett. 95, 244502 (2005) doi:10.1103/PhysRevLett.95.244502

    Article  ADS  Google Scholar 

  133. H.J.H. Clercx, G.J.F. van Heijst, Phys. Rev. Lett. 85, 306 (2000) doi:10.1103/PhysRevLett.85.306

    Article  ADS  Google Scholar 

  134. D.D. Kosambi, J. Indian Math. Soc. 7, 76 (1943)

    MathSciNet  MATH  Google Scholar 

  135. M. Loéve, C. R. Acad. Sci. Paris 1, 220 (1945)

    Google Scholar 

  136. K. Karhunen, Ann. Acad. Sci. Fennicae Ser. A1, 34 (1946)

    Google Scholar 

  137. J.L. Lumley, in Atmospheric Turbulence and Wave Propagation, edited by A.M. Yaglom, V.I. Tatarski, Vol. 166 (Nauka, Moscow, 1967)

  138. T. Dudok de Wit, A.-L. Pecquet, J.-C. Vallet et al., Phys. Plasmas 1, 3288 (1994) doi:10.1063/1.870481

    Article  ADS  Google Scholar 

  139. S. Benkadda, T. Dudok de Wit, A. Verga et al., Phys. Rev. Lett. 73, 3403 (1994) doi:10.1103/PhysRevLett.73.3403

    Article  ADS  Google Scholar 

  140. S. Futatani, S. Benkadda, D. del-Castillo-Negrete, Phys. Plasmas 16, 042506 (2009) doi:10.1063/1.3095865

    Article  ADS  Google Scholar 

  141. M. Rajkovic, T.-H. Watanabe, M. Skoric, Phys. Plasmas 16, 092306 (2009) doi:10.1063/1.3237133

    Article  ADS  Google Scholar 

  142. J.L. Lumley, Stochastic Tools in Turbulence (Academic Press, New York, 1971)

  143. L. Sirovich, Quart. Appl. Math. 45, 561 (1987)

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romé, M., Lepreti, F. Turbulence and coherent structures in non-neutral plasmas. Eur. Phys. J. Plus 126, 38 (2011). https://doi.org/10.1140/epjp/i2011-11038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11038-4

Keywords

Navigation