Skip to main content
Log in

The breakup of gas bubbles by a shock wave: brief historical background

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

A gas–hydrate method of CO2 gas storage is one of the modern technologies for reducing it emissions into the atmosphere. The breakup of gas bubbles by a shock wave is an actual area of scientific and technological research. However, it is less known that such research began in the late 1950s in the USSR by Prof. Vladilen F. Minin. The paper presents the main discoveries related to the destruction of gas bubbles in a liquid under the influence of a shock wave made more than 60 years ago. Looking back: Study the past to understand the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. National Academy of Sciences. 2020. Climate change: Evidence and causes: Update 2020. The National Academies Press, Washington, DC, p. 5. https://doi.org/10.17226/25733

  2. Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Zheng, B. 2022. Global Carbon Budget 2022. Earth System Science Data, 14(11): 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

    Article  ADS  Google Scholar 

  3. Lan, X., B. D. Hall, G. Dutton, J. Mühle, J. W. Elkins, and I. J. Vimont. Long-lived greenhouses gases [in State of the Climate in 2021, Chapter 2: Global Climate]. Bulletin of the American Meteorological Society103 (8): S81−S84 (2022). https://doi.org/10.1175/BAMS-D-22-0092.1.

  4. Pandey, G., Poothia, T., Kumar, A. 2022. Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Applied Energy 326: 119900.

    Article  Google Scholar 

  5. Rosen, A. 2015. The Wrong Solution at the Right Time: The Failure of the Kyoto Protocol on Climate Change. Politics & Policy, 43(1): 30-58.

    Article  Google Scholar 

  6. Kuang, Y., Zhang, L., Zheng, Y. 2022. Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR. Energy 252: 124082.

    Article  Google Scholar 

  7. Rehman, A.u.; Lal, B. 2022. Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous. Energies 15:8309.

    Article  Google Scholar 

  8. Gudmundsson, J., Mork, M., Graff, O.: Hydrate non-pipeline technology. In: Proceedings of the Fourth International Conference on Gas Hydrates, May 19–23, Yakohama, Japan, (2002), pp. 997–1002.

  9. T. Takaoki, 2008. Natural gas transportation in form of hydrate. Journal of the Japanese Association for Petroleum Technology 73(2): 158-163.

    Article  Google Scholar 

  10. Kezirian, M.T.; Phoenix, S.L. 2017. Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves. Energies10: 828.

    Article  Google Scholar 

  11. Vladilen F. Minin. (2023). https://en.wikipedia.org/wiki/Vladilen_Minin

  12. Komel’kov V.S. (1958). https://www.biblioatom.ru/persons/komelkov_vladimir_stepanovich/ (in Russian). See also Technology of large pulsed currents and magnetic fields, ed. V. S. Komel’kov, M., Atomizdat, 1970 (in Russian)

  13. R. I. Ilkaev, 2013. Major stages of the Atomic Project. Uspekhi Fizicheskikh Nauk 183 (5) 528 - 534. DOI: https://doi.org/10.3367/UFNr.0183.201305h.0528

    Article  Google Scholar 

  14. Ilievski, V.: The Demiurge and His Place in Plato’s Metaphysics and Cosmology. In: Time and Cosmology in Plato and the Platonic Tradition. 44–77 (2022). https://doi.org/10.1163/9789004504691_004

  15. MIPT 2012 Those you want to remember. Za Nauku 12, pp.10–12 (2012 ). https://mipt.ru/za-nauku/upload/239/pdf_1908-arph3xb6erf.pdf (In Russian)

  16. Reynolds, D.: Science, technology, and the Cold War. In: Leffler MP, Westad OA, eds. The Cambridge History of the Cold War. The Cambridge History of the Cold War. Cambridge University Press; (2010) p.378–399. DOI: https://doi.org/10.1017/CHOL9780521837217.019

  17. P. Josephson and A. Sorokin, 2017. Physics moves to the provinces: the Siberian physics community and Soviet power, 1917–1940. The British Journal for the History of Science, 50(2), 297-327. DOI: https://doi.org/10.1017/S0007087417000309

    Article  Google Scholar 

  18. Hartunian, R., & Sears, W. 1957. On the instability of small gas bubbles moving uniformly in various liquids. Journal of Fluid Mechanics, 3(1): 27-47.

    Article  ADS  Google Scholar 

  19. Noordzii, L.: Shock waves in mixtures of liquids and air bubbles, Dissertation, Twente University, Netherlands (1973)

  20. Jensen, F.B. 1973. Response of an air bubble in water to a shock wave, Rep. Danish Center Appl. Math. Mech., 49:4.

    Google Scholar 

  21. Soloukhin, R.I. 1961. Compression of a spherical gas bubble in water by a shock wave, Zh. Prikl. Mekh. Tekh. Fiz., 1:6-8.

    Google Scholar 

  22. Hermans, W. 1973. On the instability of a translating gas bubble under the influence of a pressure step, Philips Res. Rep. Suppl., 3:4-8.

    Google Scholar 

  23. Minin, V.F.: Interaction of an underwater shock wave with a bubble screen, PhD Thesis, Institute of hydrodynamics, USSR, (1961). Available at https://www.researchgate.net/profile/Vladilen-Minin (in Russian)

  24. Kuznetsov, V.M.: Explosion is a creator. Za nauku v Sibiri, 22(22), Dec.5 (1961). https://mydisk.ict.nsc.ru/s/LTTe34i6PXpgpZB/download?path=%2F1961&files=Nvs_22.pdf (in Russian)

  25. Wise, D. L., & Houghton, G. 1966. The diffusion coefficients of ten slightly soluble gases in water at 10-60 C. Chem. Eng. Sci., 21, 999-1010.

    Article  Google Scholar 

  26. Krieger, I. M., Mulholland, G. W., & Dickey, C. S. (1967). Diffusion coefficients for gases in liquids from the rates of solution of small gas bubbles. J. Phys. Chem., 71(4), 1123-1129.

    Article  Google Scholar 

  27. Benjamin, T. B., & Ellis, A. T. 1966. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 260(1110): 221-240.

    ADS  Google Scholar 

  28. Kozyrev, P.: On Cumulative Collapse of Cavitation Cavities. Trans. ASME, J. Basic Engr., 90, D, 1, 116–124 (1968)

  29. Mitchell, T.J., Hammitt, F.G.: Asymmetric cavitation bubble collapse. Trans. ASME, J. Fluids Engr., pp. 29–37 (1973)

  30. C. L. Kling and F. G. Hammitt (1972), "A Photographic Study of Spark-Induced Cavitation Bubble Collapse", J. Basic Eng. 94(4): 825-832.

    Article  Google Scholar 

  31. W.-J. Yang, R. Echigo, D.R. Wotton, J.B. Hwang. 1971. Experimental studies of the dissolution of gas bubbles in whole blood and plasma—I. Stationary bubbles, Journal of Biomechanics, 4(4), 275-281.

    Article  Google Scholar 

  32. Y. Mori, K. Hijikata, T. Nagatani. 1977. Fundamental study of bubble dissolution in liquid, International Journal of Heat and Mass Transfer, 20(1), 41-50.

    Article  Google Scholar 

  33. S. Chu, and A. Prosperetti. 2016. History effects on the gas exchange between a bubble and a liquid, Phys. Rev. Fluids, 1(6), 064202.

    Article  ADS  Google Scholar 

  34. Minin V. F., Minin I. V., and Minin O. V. 2011. Calculation Experiment Technology, Computational Fluid Dynamics Technologies and Applications. InTech, Jul. 05, 2011. doi: https://doi.org/10.5772/22497.

    Article  Google Scholar 

  35. Smirnov, N.: Explosive Scientist. Kommersant (2019). https://www.kommersant.ru/doc/3982714 (in Russian)

  36. Vasiliev, A.A. : Tamed explosion. Science first hand, 4(64) (2015). https://scfh.ru/papers/ukroshchennyy-vzryv/ (in Russian)

  37. Minin, V.F., Babutalov, F.: On the nature of pear lightning. Sov. Phys.-Dokl. 14(10), 979 (translated from Dokl. Akad. Nauk SSSR, 188(4), 795–798 (1969)

  38. J. D. Barry, 1980. Ball lightning and Bead Lightning. Plenum press, N.Y., 1980

    Google Scholar 

  39. Jarman, P.: Sonoluminescence: A Discussion. The J. of the Acoust. Soc. of Am., 32(11): 1459–1462 (1960)

  40. Minin, V.F.: Explosion on the surface of a liquid, Zh. Prikl. Mekh. Tekh. Fiz., 3:1–4 (1964). Reprinted in: High Velocity Impact Phenomena, Ed by E.Kinslow, Academic Press (1970). https://doi.org/10.1016/B978-0-124-08950-1.X5001-0

  41. J. Luo, Z. Niu (2019). Jet and Shock Wave from Collapse of Two Cavitation Bubbles. Scientific Reports 9, 1352.

    Article  ADS  Google Scholar 

  42. Deribas, A.A., Pokhozhaev, S.I.: On the problem of a strong explosion at the surface of a liquid. Dokl. Akad. Nauk SSSR, 144(3), 524–526 (1962)

  43. Emmony, D.C., Siegrist, M., Kneubühl, F. 1976. Laser‐induced shock waves in liquids,” Appl. Phys. Lett. 29(9): 547-549.

    Article  ADS  Google Scholar 

  44. Minin, V.F., Kuznetsov, V.M.: Experimental Results in the "Plume" Problem. In: Seminars of the Hydrodynamics Institute, Siberian branch, Academy of sciences of the USSR, October, 21. In Russian (1970)

  45. Palchikov E. I., Seleznev V. A., Alekseev E. G, 2022. Lecture demonstrations of experiments in physics at the Novosibirsk State University. Siberian Journal of Physics, 17(2), 93-104 (In Russian)

    Article  Google Scholar 

  46. M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. T. van Duin. 2010. Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water. Phys. Rev. Lett. 105: 014503.

    Article  ADS  Google Scholar 

  47. Siew-Wan, O., Evert, K., Cheong, K.B.: Bubbles with shock waves and ultrasound: a review. Interface Focus, 520150019 (2015)

  48. Apazidis, N. 2016. Numerical investigation of shock induced bubble collapse in water. Physics of Fluids 28: 046101.

    Article  ADS  Google Scholar 

  49. Minin, V.F., Minin, I.V., Minin, O.V., Shuvalov, G.N.: Apparatus for liquid acoustic signal generation using self-sustained low-voltage electric discharge generator. In: Proc. of the 13th Int. Scientific-technical conf. On actual problems of electronic instrument Engineering (APEIE) -39281, Novosibirsk, Oct.3–6, vol.1, p.138–139 (2016)

  50. Wu, Y.T., Adnan, A. 2017. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci Rep 7: 5323.

    Article  ADS  Google Scholar 

  51. Bempedelis, N., & Ventikos, Y. 2020. Energy focusing in shock-collapsed bubble arrays. Journal of Fluid Mechanics, 900: A44. doi:https://doi.org/10.1017/jfm.2020.535

    Article  ADS  MathSciNet  Google Scholar 

  52. Zhang, Y.; Zhang, X.; Zhang, S.; Ying, J.; Yang, Y.ang, H.; Li, Z.; Zhang, Y. 2023. A Review of the Dynamics Progress of Bubble Collapse within Droplet and Droplet Splash. Appl. Sci. 13:7822.

    Article  Google Scholar 

  53. S. Rawat and N. Mitra. 2023. Atomistic insight into the shock-induced bubble collapse in water. Physics of Fluids 35: 097114.

    Article  ADS  Google Scholar 

  54. S. Hong, G. Son, 2023. Numerical investigation of ultrasound focusing and bubble collapse, Ultrasonics, 135, 107133.

    Article  Google Scholar 

  55. Tomita, Y., Shima, A. & Takahashi, K. 1983. The collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure. Journal of Fluids Engineering 105(3): 341–347.

    Article  Google Scholar 

  56. Tomita, Y., Shima, A. & Ohno, T. 1984. Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics 56 (1): 125–131.

    Article  ADS  Google Scholar 

  57. Baranov, P.F., Zatonov, I.A.: Some pioneering research in laboratory simulation of scaled astrophysical phenomena by Russian physicists. J. Phys. Conf. Ser. 1709, 012003 (2020). https://doi.org/10.1088/1742-6596/1709/1/012003

    Article  Google Scholar 

  58. Isbell, W.M., Anderson, C.E., Asay, J.R., Bless, S.J., Grady, D.E., Sternberg, J.: Penetration mechanics research in the former Soviet Union. FASAC Technical Assessment Report (Virginia: Science Applications International Corporation) PB93–14688 (1992)

  59. The Telegraph: (1980). https://www.telegraph.co.uk/sponsored/rbth/features/10611080/moscow-olympics-1980.html

  60. Shipilov, S.E., Yakubov, V.P.: History of technical protection. 60 years in science: to the jubilee of Prof. V.F. Minin. IOP Conf. Ser.: Mater. Sci. Eng. 363, 012033 (2018). https://doi.org/10.1088/1757-899X/363/1/012033

    Article  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the Tomsk Polytechnic University Development Program. No funding was received for conducting this study. We would like to thank Dr. Ilia Rasskazov for the help with English.

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Minin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, I.V., Minin, O.V. The breakup of gas bubbles by a shock wave: brief historical background. EPJ H 49, 5 (2024). https://doi.org/10.1140/epjh/s13129-024-00071-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/s13129-024-00071-w

Navigation