The European Physical Journal H

, Volume 43, Issue 4–5, pp 551–577 | Cite as

The large tokamak JT-60: a history of the fight to achieve the Japanese fusion research mission

  • Mitsuru KikuchiEmail author
Part of the following topical collections:
  1. Plasma physics in the 20th century as told by players


Fusion research was driven by the oil shocks in 1970’s and the concern about climate change during 20th century. This paper addressed the scientific research history of JT-60, the tokamak that achieved record fusion performances and opened the way toward the continuous operation of a tokamak fusion reactor through its scientific discoveries. The paper also highlighted technical struggles to improve machine capabilities and to solve technical issues faced during the JT-60 project. The missions of JT-60 were to achieve equivalent energy break-even (Q = PDTequi. / Pheat ≥ 1) and to establish a scientific basis for fusion reactor. The JT-60 made several modifications to reach equivalent break-even condition and continued efforts were made by the JT-60 team to solve critical technical issues during 23 years of research operation. Scientific success of JT-60 led to current ITER projects and the modification of JT-60 to a superconducting tokamak, JT-60SA. This paper is intended to be useful for the future researchers and managers of large-scale project by giving dynamical evolutions and highlighting key players. I dedicate this paper to Hiroshi Kishimoto, who made an outstanding contribution in managing the JT-60 research project.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kishimoto, Road to Fusion Energy: From JT-60 to ITER, May 27, 2005 (in Japanese), unpublished manuscript Google Scholar
  2. 2.
    R. Herman, Fusion: the Search for Endless Energy (Cambridge University Press, 1990), p. 166 Google Scholar
  3. 3.
    K.M. Young, M. Bell et al., TFTR Initial Operation, Plasma Phys. Contr. Fusion 26, 11 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    P.H. Rebut et al., First Experiments in JET, Plasma physics and controlled nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 11 (1985) Google Scholar
  5. 5.
    M. Yoshikawa and the JT-60 Team, Recent Experiments in JT-60, Plasma physics and controlled nuclear fusion research (Proc. 11th Int. Conf. Kyoto, 1986), 1, IAEA, Vienna, 11 (1987) Google Scholar
  6. 6.
    E. Teller, Peaceful Uses of Fusion, Proc. 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Theoretical and Experimental Aspects of Controlled Nuclear Fusion 31 27, paper P/2410 (1958) Google Scholar
  7. 7.
    F. Wagner, G. Becker, et al., Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , Phys. Rev. Lett. 49, 1408 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    F. Wagner, The History of Research into Improved Confinement Regime, in topical collection “Plasma Physics in the 20th century as told by players”, Eur. Phys. J. H, 43, 523 (2018) Google Scholar
  9. 9.
    A. Kitsunezaki, et al., High-pressure Plasma with High-power NBI Heating in Doublet III Plasma physics and controlled nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 57 (1985) Google Scholar
  10. 10.
    M. Ohta, T. Abe, N. Akino, et al., Construction and Testing of JT-60, Fusion Eng. Design 5, 27 (1987) CrossRefGoogle Scholar
  11. 11.
    H. Kishimoto, H. Aikawa, A. Oikawa, N. Miya, K. Suzuki, T. Ozeki, T. Tokutake, S. Kunieda, K. Hiruta, R. Hosoda, Construction and Testing of JT-60, Fusion Eng. Design 5, 9 (1987) CrossRefGoogle Scholar
  12. 12.
    H.P. Eubank, J. Bell, et al., Neutral-beam Heating in TFTR – Projections and Initial Results Plasma physics and contr. nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 303 (1985) Google Scholar
  13. 13.
    M. Kikuchi, T. Hirayama et al., Incremental Energy Confinement Time During H0 Beam Heating in JT-60, Nucl. Fusion 27, 1239 (1987) CrossRefGoogle Scholar
  14. 14.
    S. Ishida, Y. Koide, et al., Observation of a Fast Beta Collapse during High Poloidal-Beta Discharges in JT-60U, Phys. Rev. Lett 68 1531 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Strachan et al., High-Temperature Plasmas in the Tokamak Fusion Test Reactor, Phys. Rev. Lett. 58, 1004 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    P.H. Rebut, and the JET Team, Recent JET Results and Future Prospects Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 1, IAEA, Vienna, 27 (1991) Google Scholar
  17. 17.
    Y. Kamada, T. Ozeki, M. Azumi, Central Magnetohydrodynamic Activity in Pellet-fueled JT-60 Plasmas, Phys. Fluids B 4, 124 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    M. Kikuchi, T. Ando et al., JT-60 Upgrade Program, Fusion Technology 1, 287 (1989) Google Scholar
  19. 19.
    M.C. Zarnstorff, M.G. Bell et al., Bootstrap Current in TFTR, Phys. Rev. Lett. 60, 1306 (1988) ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Bickerton, J.W. Connor, J.B. Taylor, Diffusion Driven Plasma Currents and Bootstrap Tokamak, Nature Physical Science 229, 110 (1971) ADSCrossRefGoogle Scholar
  21. 21.
    M. Kikuchi, M. Azumi et al., Bootstrap Current During Perpendicular Neutral Injection in JT-60, Nucl. Fusion 30, 343 (1990) CrossRefGoogle Scholar
  22. 22.
    M. Kikuchi, Steady State Tokamak Reactor Based on the Bootstrap Current, Nucl. Fusion 30, 265 (1990) CrossRefGoogle Scholar
  23. 23.
    Y. Seki, M. Kikuchi, T. Ando, Y. Ohara, S. Nishio, et al., The Steady State Tokamak Reactor Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 3, IAEA, Vienna, 473 (1991) Google Scholar
  24. 24.
    R.W. Conn, F. Najmabadi and the ARIES team, ARIES-I, a Steady-state, First StabilityTokamak Reactor with Enhanced Safety and Environmental Features, Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 3, IAEA, Vienna, 6593 (1991) Google Scholar
  25. 25.
    S. Tsuji, et al., Observation of the Limiter H Mode in the JT-60 Tokamak with Lower-Hybrid Current Drive, Phys. Rev. Lett. 64, 1023 (1990) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Ikeda, O. Naito et al., High Power Lower Hybrid Current Drive Experiments in JT-60U, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 415 (1995) Google Scholar
  27. 27.
    M. Shimada and JT-60 Team, JT-60U High Power Heating Experiments, Plasma physics and contr. nuclear fusion research (Proc. 14th Int. Conf. Würzburg, 1992), 1, IAEA, Vienna, 57 (1993) Google Scholar
  28. 28.
    M. Kikuchi and JT-60 Team, Recent JT-60U Results Towards Steady State Operation of Tokamaks, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 31 (1995) Google Scholar
  29. 29.
    H. Tamai, M. Kikuchi, T. Arai, M. Honda, H. Miyata, M. Saidoh, T. Kimura, M. Nagami, M. Shimizu, J. Ohmori, M. Shibui, et al., Stress Analysis for the Crack Observation in Cooling Channels of the Toroidal Field Coils in JT-60U, Fusion Eng. Design 38, 429 (1998) CrossRefGoogle Scholar
  30. 30.
    N. Hosogane, S. Sakurai, K. Shimizu, et al., A Compact W-shaped Pumped Divertor Concept for JT-60U, Plasma physics and controlled nuclear fusion research (Proc. 16th Int. Conf. Montreal, 1996), 3, IAEA, Vienna, 31 (1995) Google Scholar
  31. 31.
    A. Sakasai, H. Takenaga, N. Hosogane, et al., Steady-State Exhaust of Helium Ash in the W-shaped Divertor of JT-60U, Proc. 17th Fusion Energy Conference, Yokohama, Paper EX6/5 Google Scholar
  32. 32.
    T. Suzuki, S. Ide, et al., Heating and Current Drive by Electron Cyclotron Waves in JT-60U, Nucl. Fusion 44, 699 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Dawson, Some Criteria for a Power Producing Thermonuclear Reactor, Proc. Phys. Soc. B 70, 6 (1957) ADSCrossRefGoogle Scholar
  34. 34.
    Advisory Committee on Nuclear Fusion, Atomic Energy Commission, National Policy of Future Nuclear Fusion Research and Development, Oct 26, 2005 (In Japanese) Google Scholar
  35. 35.
    Y. Sakamoto, T. Fujita, S. Ide, A. Isayama, et al., Stationary High Confinement Plasmas with Large Bootstrap Current Fraction in JT-60U, Nucl. Fusion 45, 574 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    M. Kikuchi, R. Conn, F. Najmabadi, Y. Seki, Recent Directions in Plasma Physics and its Impact on Tokamak Magnetic Fusion Design, Fusion Eng. Design 16, 253 (1991) CrossRefGoogle Scholar
  37. 37.
    M. Kikuchi, Prospect of Stationary Tokamak Reactor, Plasma Phys. Control. Fusion 35, B39 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Koide, M. Kikuchi, et al., Internal Transport Barrier on q = 3 Surface and Poloidal Plasma Spin Up in JT-60U High-βp Discharges, Phys. Rev. Lett 72, 3662 (1994) ADSCrossRefGoogle Scholar
  39. 39.
    Y. Koide, S. Ishida, M. Kikuchi et al., Improved Confinement and Transport Barrier in the JT-60U High βp H Mode, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 199 (1995) Google Scholar
  40. 40.
    P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal Flows in Plasma – a Review, Plasma Phys. Control. Fusion 47, R35 (2005) CrossRefGoogle Scholar
  41. 41.
    H. Biglari, P.H. Diamond, P.W. Terry, Influence of Sheared Poloidal Rotation on Edge Turbulence, Phys. Fluids B 2, 1 (1990) ADSCrossRefGoogle Scholar
  42. 42.
    T.H. Dupree, Theory of Phase Space Density Granulation in Plasmas, Phys. Fluids 15, 3640 (1972) CrossRefGoogle Scholar
  43. 43.
    T. Boutros-Ghali, T.H. Dupree, Theory of Two-point Correlation Function in a Vlasov Plasma, Phys. Fluids 24, 1839 (1981) ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    H. Shirai, M. Kikuchi, T. Takizuka, et al., Reduced Transport and Er Shearing in Improved Confinement Regimes in JT-60U, Nucl. Fusion 39, 1713 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    R. Nazikian, K. Shinohara, G.J. Kramer, et al., Measurement of Turbulence Decorrelation during Transport Barrier Evolution in a High-Temperature Fusion Plasma, Phys. Rev. Lett. 94, 135002 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    F. Troyon, R. Gruber, H. Saurenmann, et al., MHD-limits to Plasma Confinement, Plasma Phys. Controlled Fusion 26, 209 (1984) ADSCrossRefGoogle Scholar
  47. 47.
    A. Hasegawa, L. Chen, Plasma Heating by Alfven Wave Phase Mixing, Phys. Rev. Lett. 32, 454 (1974) ADSCrossRefGoogle Scholar
  48. 48.
    H. Reimerdes, A.M. Garofalo, G.L. Jackson, et al., Reduced Critical Rotation for Resistive-Wall Mode Stabilization in a Near-Axisymmetric Configuration, Phys. Rev. Lett. 98, 055001 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    M. Takechi, G. Matsunaga, N. Aiba, T. Fujita, et al., Identification of a Low Plasma-Rotation Threshold for Stabilization of the Resistive-Wall Mode, Phys. Rev. Lett. 98, 055001 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    M. Kikuchi, M. Azumi, Steady State Tokamak Research - Core Physics, Rev. Mod. Phys. 84, 1807 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    T. Ozeki, M. Azumi, et al., Profile Control for a Stable High βp Tokamak with a Large Bootstrap Current, Plasma physics and contr. nuclear fusion research (Proc. 14th Int. Conf. Würzburg, 1992), 2, IAEA, Vienna, 187 (1993) Google Scholar
  52. 52.
    C. Kessel, et al., Improved Plasma Performance in Tokamaks with Negative Magnetic Shear, Phys. Rev. Lett. 72, 1212 (1994) ADSCrossRefGoogle Scholar
  53. 53.
    T. Fujita, T. Oikawa, et al., Plasma Equilibrium and Confinement in a Tokamak with nearly Zero Central Current Density in JT-60U, Phys. Rev. Lett. 87, 245001 (2001) ADSCrossRefGoogle Scholar
  54. 54.
    N.C. Hawkes, B.C. Stratton, et al., Observation of Zero Current Density in the Core of JET Discharges with Lower Hybrid Heating and Current Drive, Phys. Rev. Lett. 87, 115001 (2001) ADSCrossRefGoogle Scholar
  55. 55.
    P. Rodrigues, J.P.S. Bizarro, Tokamak Equilibria with Toroidal-Current Reversal in the Plasma Core Consistent with Experimental Data, Phys. Rev. Lett. 99, 125001 (2007) ADSCrossRefGoogle Scholar
  56. 56.
    M. Matsuoka, Y. Kamada, M. Kikuchi, et al., Study on Negative-Ion-Based Neutral Beam Injection System for JT-60 Upgrade , JAERI-M 89–117 (1989) in Japanese Google Scholar
  57. 57.
    Fusion Reactor System Laboratory, Concept Study of the Steady State Tokamak Reactor (SSTR), JAERI-M 91-081(1991),
  58. 58.
    M. Kuriyama, et al., High Energy Negative-ion Based Neutral Beam Injection System for JT-60U, Fusion Eng. Design 26, 445 (1995) CrossRefGoogle Scholar
  59. 59.
    A. Kojima, M. Hanada, et al., Achievement of 500 keV Negative Ion Beam Acceleration on JT-60U Negative-ion-based Neutral Beam Injector, Nucl. Fusion 51, 083049 (2011) ADSCrossRefGoogle Scholar
  60. 60.
    T. Oikawa, K. Ushigusa, et al., Heating and Non-inductive Current Drive by NegativeIon Based NBI in JT-60U, Nucl. Fusion 40, 435 (2000) ADSCrossRefGoogle Scholar
  61. 61.
    C.Z. Cheng, L. Chen, M.S. Chance, High-n Ideal and Resistive Shear Alfvén Waves in Tokamaks, Annals of Physics 161, 21 (1985) ADSCrossRefGoogle Scholar
  62. 62.
    K.L. Wong, R.J. Fonck, et al., Excitation of Toroidal Alfvén Eigenmodes in TFTR, Phys. Rev. Lett. 66, 1874 (1991) ADSCrossRefGoogle Scholar
  63. 63.
    K. Shinohara, Y. Kusama, M. Takechi, A. Morioka, M. Ishikawa, et al. Alfvén Eigenmodes driven by Alfvénic beam ions in JT-60U, Nucl. Fusion 41, 603 (2001) ADSCrossRefGoogle Scholar
  64. 64.
    Ira B. Bernstein, J.M. Green, M.D. Kruskal, Exact Nonlinear Plasma Oscillations, Phys. Rev. 108, 546 (1957) ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    H.L. Berk, B.N. Breizman, N.V. Petviashvili, Spontaneous Hole-clump Pair Creation in Weakly Unstable Plasmas, Phys. Lett. A 234, 213 (1997) ADSCrossRefGoogle Scholar
  66. 66.
    K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, et al., Major Improvement of Gyrotron Efficiency with Beam Energy Recovery, Phys. Rev. Lett. 73, 3532 (1994) ADSCrossRefGoogle Scholar
  67. 67.
    K. Sakamoto, A. Kasugai, et al., High Power 170GHz Gyrotron with Synthetic Diamond Window, Rev. Sci. Instrum. 70, 208 (1999) ADSCrossRefGoogle Scholar
  68. 68.
    K. Sakamoto, A. Kasugai, et al., Achievement of Robust High-efficiency 1MW Oscillation in the Hard-self-excitation Region by a 170GHz Continuous-wave gyrotron, Nat. Phys. 3, 411 (2007) CrossRefGoogle Scholar
  69. 69.
    Y. Ikeda, A. Kasugai, et al., Initial Results of Electron Cyclotron Range of Frequency (ECRF) Operation and Experiments in JT-60U, Fus. Eng. Design 53, 351 (2001) CrossRefGoogle Scholar
  70. 70.
    S. Moriyama, T. Kobayashi, A. Isayama, et al., Development and Achievements on the High Power ECRF System in JT-60U, Nucl. Fusion 49, 085001 (2009) ADSCrossRefGoogle Scholar
  71. 71.
    T. Kobayashi, A. Isayama, et al., Progress of High-power and Long-pulse ECRF System Development in JT-60, Nucl. Fusion 51, 103037 (2011) ADSCrossRefGoogle Scholar
  72. 72.
    M. Kikuchi, Frontier in Fusion Research: Physics and Fusion (Springer-Verlag, 2011) Google Scholar
  73. 73.
    A. Isayama, Y. Kamada, S. Ide, et al., Complete Stabilization of a Tearing Mode in Steady State High-βp H-mode Discharges by the First Harmonic Electron Cyclotron Heating/Current Drive on JT-60U, Plasma Phys. Control. Fusion 42, L37 (2000) CrossRefGoogle Scholar
  74. 74.
    G. Gantenbein, H. Zohm, et al., Complete Suppression of Neoclassical Tearing Modes with Current Drive at the Electron-Cyclotron-Resonance Frequency in ASDEX Upgrade Tokamak, Phys. Rev. Lett. 85, 1242 (2000) ADSCrossRefGoogle Scholar
  75. 75.
    T. Oikawa, A. Isayama, T. Fujita, et al., Evolution of the Current Density Profile Associated with Magnetic Island Formation in JT-60U, Phys. Rev. Lett. 94, 125003 (2005) ADSCrossRefGoogle Scholar
  76. 76.
    Y. Sakamoto, Y. Kamada, S. Ide, T. Fujita, et al., Characteristics of Internal Transport Barriers in JT-60U Reversed Shear Plasmas, Nucl. Fusion 41, 865 (2001) ADSCrossRefGoogle Scholar
  77. 77.
    Y. Sakamoto, G. Matsunaga, et al., Development of Reversed Shear Plasmas with High Bootstrap Current Fraction Towards Reactor Relevant Regime in JT-60U, Nucl. Fusion 49, 095017 (2009) ADSCrossRefGoogle Scholar
  78. 78.
    The PCAST Fusion Review Panel, The U.S. Program of Fusion Energy Research and Development,
  79. 79.
    M. Kikuchi, et al., Design Progress of JT-60SU, Plasma physics and controlled nuclear fusion research (Proc. 16th Int. Conf. Montreal, 1996), 3, IAEA, Vienna, 451 (1997) Google Scholar
  80. 80.
    H. Kishimoto, S. Ishida, M. Kikuchi, H. Ninomiya, Advanced Tokamak Research on JT-60, Nucl. Fusion 45, 986 (2005) ADSCrossRefGoogle Scholar
  81. 81.
    C. Angioni, A.P. Peeters, G.V. Pereverezev, F. Ryter et al., Density Peaking, Anomalous Pinch, and Collisionality in Tokamak Plasmas, Phys. Rev. Lett. 90, 205003 (2003) ADSCrossRefGoogle Scholar
  82. 82.
    Y. Wan, J. Li, Y. Liu, X. Wang, et al., Overview of the Present Progress and Activities on the CFETR, Nucl. Fusion 57, 102009 (2017) ADSCrossRefGoogle Scholar
  83. 83.
    S.O. Dean, Search for the Ultimate Energy Source – History of the US Fusion Energy Program (Springer, 2013) Google Scholar
  84. 84.
    Proceedings of the 1999 Fusion Summer Study, July 11–23, 1999, Snowmass, Colorado.
  85. 85.
    Burning Plasma Assessment Committee, Burning Plasma – Bring a Star to Earth, NationalAcademy of Sciences,
  86. 86.
    M. Kikuchi, M. Azumi, Frontier in Fusion Research: Introduction to Modern Tokamak Physics (Springer Verlag, 2015) Google Scholar
  87. 87.
    M. Kikuchi, F.C. Schüller, Obituaries: Dieter Sigmar and Hiroshi Kishimoto, Nucl. Fusion 45 (2005) Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institutes for Quantum and Radiological Science and TechnologyNakaJapan
  2. 2.ILE, Osaka UniversityOsakaJapan
  3. 3.Southwestern Institute of PhysicsChengduP.R. China

Personalised recommendations