The European Physical Journal H

, Volume 43, Issue 4–5, pp 355–396 | Cite as

An interview with Roald Sagdeev: his story of plasma physics in Russia, 1956–1988

  • Roald Z. Sagdeev
  • Patrick H. DiamondEmail author
Oral history interview
Part of the following topical collections:
  1. Plasma physics in the 20th century as told by players


This oral history interview presents Roald Z. Sagdeev’s story of plasma physics in Russia. It chronicles the Russian school’s achievements in basic, laboratory, fusion and space plasma physics. The interview begins with memories of Sagdeev’s graduate student days in Moscow and then describes his work at the Kurchatov Institute of Atomic Energy (1956–1961), the Budker Institute of Nuclear Physics in Novosibirsk (1961–1971) and the Space Research Institute (IKI) (1973–1988). The interview examines the development of quasilinear theory, collisionless shocks, wave turbulence, instabilities, drift waves, chaos theory, the early stages of magnetic confinement theory and space plasma physics. Sagdeev and his school made seminal contributions in all of these areas, and all are central topics in plasma physics today. Sagdeev also speaks of his collaborations and friendships with notable scientists, such as M.N. Rosenbluth, M.A. Leontovich, L.A. Artisimovich, L.I. Rudakov, A.A. Galeev, V.E. Zakharov, as well as of the political and institutional challenges of this period. The conversation reflects Sagdeev’s unique and significant influence in modern plasma theory, Russian space exploration and his support of international cooperation for the advancement of humanity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohm, D. 1949. The characteristics of electrical discharges in magnetic fields (Guthrie, A. and R.K. Wakerling, eds.). McGraw–Hill Book Company, Inc., New York Google Scholar
  2. 2.
    Chew, G.F., M.L. Goldberger and F.E. Low 1956. The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. P. R. Soc. A 236: 112–118 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coppi, B., M.N. Rosenbluth and R.Z. Sagdeev. 1967. Instabilities due to temperature gradients in complex magnetic field configurations. Phys. Fluids 10: 582–587 ADSCrossRefGoogle Scholar
  4. 4.
    Engel, A.V. and M. Steenbeck. 1932. Elektrischegasentladungen – ihrephysik und technik. Springer-Verlag, Berlin Google Scholar
  5. 5.
    Galeev, A.A., R. Rosner and G.S. Vaiana. 1979. Structured coronae of accretion disks. Astrophys. J., Part 1 229: 318–326 ADSCrossRefGoogle Scholar
  6. 6.
    Gamow, G. 1970. My world line: an informal autobiography. Viking Press, New York Google Scholar
  7. 7.
    Karney, C. 1978. Stochastic ion heating by a lower hybrid wave. Phys. Fluids 21: 1584–1599 ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Kompaneets, A.S. 1957. The establishment of thermal equilibrium between quanta and electrons. J. Exp.Theor. Phys. 4: 730–737 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lamb, H. 1895. Hydrodynamics. Cambridge University Press, Cambridge Google Scholar
  10. 10.
    Liang, Y.M. and P.H. Diamond. 1993a. Revisiting the validity of quasilinear theory. Phys. Fluids B–Plasma 5: 4333–4340 ADSCrossRefGoogle Scholar
  11. 11.
    Liang, Y.M. and P.H. Diamond. 1993b. Weak turbulence theory of Langmuir waves: a reconsideration of the validity of quasilinear theory. Comments Plasma Phys. Control. Fusion 15: 139–149 Google Scholar
  12. 12.
    Moiseev, S.S. and R.Z. Sagdeev. 1963. On the Bohm diffusion coefficient [in Russian]. Zh. Eksperim. Teor. Fiz. 44: 763–765 Google Scholar
  13. 13.
    Novakovskii, S.V.C., S. Liu, R.Z. Sagdeev and M.N. Rosenbluth. 1997. The radial electric field dynamics in the neoclassical plasmas. Phys. Plasmas 4: 4272–4282 ADSCrossRefGoogle Scholar
  14. 14.
    Rechester, A.B. and M.N. Rosenbluth. 1978. Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40: 38–41 ADSCrossRefGoogle Scholar
  15. 15.
    Rosenbluth, M.N., R.Z. Sagdeev, J.B. Taylor and G.M. Zaslavski. 1966. Destruction of magnetic surfaces by magnetic field irregularities. Nucl. Fusion 6: 297–300 CrossRefGoogle Scholar
  16. 16.
    Sagdeev, R.Z. 1966. Cooperative phenomena and shock waves in collisionless plasmas. In: Reviews of plasma physics, Vol. 4 (Leontovich, M.A., ed.); pp. 23–91. Consultants Bureau, New York Google Scholar
  17. 17.
    Sagdeev, R.Z. 1994. The making of a Soviet scientist: my adventures in nuclear fusion and space from Stalin to Star Wars. John Wiley & Sons, New York Google Scholar
  18. 18.
    Sagdeev, R.Z. and A.A. Galeev. 1969a. Nonlinear plasma theory. W.A. Benjamin, New York Google Scholar
  19. 19.
    Sagdeev, R.Z. and A.A. Galeev. 1969b. A paradox in the diffusion of plasma in toroidal magnetic traps. Dokl. Akad. Nauk. SSSR 189: 1204–1207 Google Scholar
  20. 20.
    Sagdeev, R.Z., D.A. Usikov and G.M. Zaslavskii. 1990. Nonlinear physics: from the pendulum to turbulence and chaos. Harwood Academic Publishers, Philadelphia Google Scholar
  21. 21.
    Schatzman, E. 1950. Remarques sur le phénomène de Nova III: l’onde de choc dans la bombe à hydrogène. Ann. Astrophys. 13: 384–389 ADSGoogle Scholar
  22. 22.
    Vedenov, A.A., E.P. Velikhov and R.Z. Sagdeev. 1962. Quasilinear theory of plasma oscillations. Proceedings of IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, Salzburg, Austria, 1961. Nucl. Fusion Suppl., Part 2: 465–475 Google Scholar
  23. 23.
    Zakharov, V.E. and V.S. L’vov. 1975. Statistical description of nonlinear wave fields. Radiophys. Quant. El. 18: 1084–1097 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA
  2. 2.Center for Astrophysics and Space Sciences, University of California San DiegoLa JollaUSA
  3. 3.Center for Fusion Science, Southwestern Institute of PhysicsChengdu, SichuanP.R. China

Personalised recommendations