The evolution of modern cosmology as seen through a personal walk across six decades

Abstract

This highly personal account of evolution of cosmology spans a period of approximately six decades 1959–2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach’s principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10−36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today’s cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aarseth, S., 1985, Direct N-body calculations in IAU Symposium 113 on Dynamics of star clusters, Eds. J. Goodman and P. Hut, Reidel, 251–259

  2. 2.

    Alpher, R. and Herman, R., 1948, Evolution of the universe, Nature, 162, 774–775

    ADS  Article  MATH  Google Scholar 

  3. 3.

    Arp, C. (H.C.), 1987, Quasars, Redshifts and Controversy, Berkeley: Interstellar Media

  4. 4.

    Assis, A.K.T. and Neves, M.C.D., 1995, History of the 2.7 K temperature prior to Penzias and Wilson, Apeiron, 2, 79–84

    Google Scholar 

  5. 5.

    Barrow, J. and Stein-Schabes, J., 1986, Inhomogeneous cosmologies with cosmological constant, Phys. Lett., 103A, 316–317

    MathSciNet  Google Scholar 

  6. 6.

    Born, M., 1965, Cosmology chapter in Einstein’s Theory of Relativity, Dover, N.Y., p. 369

  7. 7.

    Brans, K. and Dicke, R., 1961, Mach’s principle and a relativistic theory of gravitation, 124, 925–935

    Google Scholar 

  8. 8.

    Burbidge, M., Burbidge, G., Fowler, W. and Hoyle, F., 2016 Synthesis of the Elements in the stars, Rev. Mod. Phys., 29, 547–650

    ADS  Article  Google Scholar 

  9. 9.

    DeWitt, B. and Brehme, R.W., 1960, Radiation damping in a gravitational field, Ann. Phys. New York, 9, 220–259

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Dicke, R., 1962, Mach’s principle and invariance under transformation of units, Phys. Rev., 125, 2163–2167

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Dirac, P., 1938, Classical theory of radiating electrons, Proc. R. Soc., A167, 148–169

    ADS  Article  MATH  Google Scholar 

  12. 12.

    Dirac, P., 1969 in Fundamental Interactions at High Energy, Eds. T. Gidehus, G. Kaiser and A. Perlmutter, Gordon and Breech, New York

  13. 13.

    Dirac, P., 1978 in Directions in Physics, Lectures delivered in Australia and New Zealand in 1975, Eds. H. Hora and J.R. Shepanski, Wiley, Interscience, p. 36

  14. 14.

    Einstein, A., 1917, Cosmological considerations in the general theory of relativity, Preuss. Akad. Wiss. Berlin, Sitzber, 142–152

  15. 15.

    Fokker, A.D., 1929, Ein invarianterVariationssatz für die Bewegung mehrerer elektrischer Massenteilchen, Z. Phys., 58, 386–393

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Fokker, A.D., 1929, Physica, 9, 33

    Google Scholar 

  17. 17.

    Fokker, A.D., 1932, Physica, 12, 145

    Google Scholar 

  18. 18.

    Gamow, G., 1946, Expanding universe and the origin of elements, Phys. Rev., 70, 572

    ADS  Article  Google Scholar 

  19. 19.

    Gibbons, G., 2003, Phantom matter and the cosmological constant. arXiv:hep-th/0302199v1

  20. 20.

    Gödel, K., 1949, An example of a new type of cosmological solution of Einstein’s field equations of gravitation, Rev. Mod. Phys., 21, 447

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Gold, T. and Hoyle, F., 1958, Cosmic rays and radio waves as manifestations of a hot universe. Paris Symposium on Radio Astronomy, Ed. R.N. Bracewell, Stanford University Press, Palo Alto, 583–588

  22. 22.

    Guth, A., 1981, Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev., D23, 347–356

    ADS  MATH  Google Scholar 

  23. 23.

    Hawking, S.W. and Ellis, G.F.R., 1974, Large Scale Structure of Spacetime, Cambridge

  24. 24.

    Hecht, L., 1996, The significance of the 1845 Gauss-Weber correspondence, The 21st Century, Fall issue, 22–43

    Google Scholar 

  25. 25.

    Heckmann, O., and Schücking E., 1958, World models, Proceedings of the Solvay Conference, Brussels Stoops, 1–10

    Google Scholar 

  26. 26.

    Hogarth, J., 1962, Cosmological considerations of the absorber theory of radiation, Proc. R. Soc., A267, 365–383

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Hoyle, F., 1950, The Nature of the Universe, Basil Blakwell, London

  28. 28.

    Hoyle, F., 1959, The Frontiers of Astronomy, William Heinamann, London

  29. 29.

    Hoyle, F., 1965, Recent developments in cosmology, Nature, 208, 111–114

    ADS  Article  Google Scholar 

  30. 30.

    Hoyle, F., 1970, in Study week on Nuclei of galaxies, Ed. O’Connell, North Holland, Amsterdam

  31. 31.

    Hoyle, F. and Narlikar, J., 1962a, On the counting of radio sources in steady state cosmology, M.N.R.A.S., 123, 133–166

    ADS  Article  MATH  Google Scholar 

  32. 32.

    Hoyle, F. and Narlikar, J., 1962b, On the counting of radio sources in steady state cosmology II, M.N.R.A.S., 125, 13–20

    ADS  Article  MATH  Google Scholar 

  33. 33.

    Hoyle, F. and Narlikar, J. 1963a, Mach’s principle and the creation of matter, Proc. R. Soc., A273, 1–11

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Hoyle, F. and Narlikar, J., 1963b, Time symmetric electrodynamics and the arrow of time in cosmology, Proc. R. Soc., A277, 1

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Hoyle, F. and Narlikar, J., 1964a, C-field as a direct particle field, Proc. R. Soc., A282, 178–183

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Hoyle, F. and Narlikar, J., 1964b, Gravitational influence of direct particle fields, Proc. R. Soc., A282, 184–190

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Hoyle, F. and Narlikar, J., 1964c, A new theory of gravitation, Proc. R. Soc., A282, 191–207

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Hoyle, F. and Narlikar, J., 1966, A radical departure from the steady state concept in cosmology, Proc. R. Soc., A290, 162–176

    ADS  Article  Google Scholar 

  39. 39.

    Hoyle, F. and Narlikar, J., 1969, The quantum mechanical response of the universe, Ann. Phys. (N.Y.), 54, 207–239

    ADS  Article  MATH  Google Scholar 

  40. 40.

    Hoyle, F. and Narlikar, J., 1971, Relativistic treatment of radiative processes, Ann. Phys.(N.Y.), 62, 44–96

    ADS  Article  Google Scholar 

  41. 41.

    Hoyle, F. and Narlikar, J., 1993, On the removal of divergences in quantum electrodynamics: a global point of view, Proc. R. Soc., A442, 469–484

    ADS  Article  Google Scholar 

  42. 42.

    Hoyle, F. and Narlikar, J., 1995, Cosmology and action at a distance electrodynamics, Rev. Mod. Phys., 61, 113–156

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Hoyle, F. and Tayler, R., 1964, The mystery of cosmic helium abundance, Nature, 203, 1108–1110

    ADS  Article  Google Scholar 

  44. 44.

    Hoyle, F., Bondi, H. and Gold, T., 1955, Black giant stars, Observatory Mag., 75, 80–81

    ADS  Google Scholar 

  45. 45.

    Hoyle, Fred, Burbidge, G., Arp, C. (H.C.), Narlikar, Jayant and Wickramasinghe, Chandra, 1990, The extragalactic universe, an alternative view, Nature, 346, 807–812

    Google Scholar 

  46. 46.

    Hoyle, F., Burbidge, G. and Narlikar, J., 1993, A quasi-steadystate model with creation of matter, Ap. J., 410, 437–457

    ADS  Article  Google Scholar 

  47. 47.

    Hoyle, F., Burbidge, G. and Narlikar, J., 2000, A Different Approach to Cosmology, Cambridge University Press

  48. 48.

    Kazanas, D., 1980, Dynamics of the universe and spontaneous symmetry breaking, Ap. J. Letters, 241, L59–L63

    ADS  Article  Google Scholar 

  49. 49.

    Linde, A., 1982, A new inflationary universe scenario, Phys. Lett., B108, 389–393

    ADS  Article  Google Scholar 

  50. 50.

    Maddox, J., 1994, News and Views, Nature, 371, 11

    ADS  Article  Google Scholar 

  51. 51.

    Mather, J.C. et al., 1990, A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Ap. J. Letters, 354, L37–L40

    ADS  Article  Google Scholar 

  52. 52.

    McKellar, A., 1941, Publ. Dom. Ast. Obs., 7, 251

    ADS  Google Scholar 

  53. 53.

    Mitton, S., 2011, Fred Hoyle: A Life in Science, Cambridge University Press

  54. 54.

    Narlikar, J., 1963, Neutrinos and the arrow of time in cosmology, Proc. R. Soc., A270, 553–561

    ADS  MathSciNet  MATH  Google Scholar 

  55. 55.

    Narlikar, J., 1968, On the general correspondence between field theories and the theories of direct interparticle action, Proc. Camb. Phil. Soc., 64, 1071–1079

    ADS  Article  MATH  Google Scholar 

  56. 56.

    Narlikar, J., 1984, The vanishing likelihood of spacetime singularity in quantum conformal cosmology, Found. Phys., 14, 443–456

    ADS  Article  Google Scholar 

  57. 57.

    Narlikar, J., 2002, An Introduction to Cosmology 2nd Edition, Cambridge University Press

  58. 58.

    Narlikar, J., 2015, Trials and tribulations of playing the devil’s advocate, Res. Astron. Astrophys., 15, 1–14

    ADS  Article  Google Scholar 

  59. 59.

    Narlikar, J., 2016, My Tale of Four Cities, autobiography published by National Book Trust, India

  60. 60.

    Narlikar, J. and Kembhavi, A., 1980, Nonstandard cosmologies, Fund. Cos. Phys., 6, 1–186

    ADS  Google Scholar 

  61. 61.

    Narlikar, J., Edmunds, M. and Wickramasinghe, C., 1976, Limits on a microwave background without the big bang, Far Infrared Astronomy, Ed. M. Rowan Robinson, Pergamon, 131–142

  62. 62.

    Narlikar, J., Vishwakarma, R.G. and Burbidge, G., 2002, Interpretations of the accelerating universe, Publ. Astron. Soc. of Pacific, 114, 1092–1096

    ADS  Article  Google Scholar 

  63. 63.

    Padmanabhan, T. and Vasanti, M.M., 1982, Can the curvature effects be neglected in the early universe? Phys. Lett., 89A, 327–328

    ADS  Article  Google Scholar 

  64. 64.

    Peebles, P.J.E., Schramm, D., Turner, E.L. and Kron, R.G., 1991, The case for the relativistic hot big bang cosmology, Nature, 352, 769–776

    ADS  Article  Google Scholar 

  65. 65.

    Penzias, A. and Wilson, R., 1965, Measurement of excess antenna temperature at 4080 Mc/s., Ap. J., 142, 419–421

    ADS  Article  Google Scholar 

  66. 66.

    Perlmutter, S. et al., 1999, Measurements of Ω and Λ from 42 high redshift supernovae, Ap. J. Letters, 517, L565–L586

    Article  Google Scholar 

  67. 67.

    Pryce, M., 1961, preprint: Private communication

  68. 68.

    Raychaudhuri, Amal K., 1955, Relativistic cosmology I, Phys. Rev., 98, 1123–1126

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. 69.

    Roll, P.G. and Wilkinson, D.T., 1966, Phys. Rev. Lett., 16, 405

    ADS  Article  Google Scholar 

  70. 70.

    Sato, K., 1981, First order phase transition of a vacuum and the expansion of the universe, M.N.R.A.S., 195, 467–479

    ADS  Article  Google Scholar 

  71. 71.

    Schwarzschild, K., 1903, Zur Elektrodynamik II, Gott. Nach., 128, 132–141

    MATH  Google Scholar 

  72. 72.

    Singh, P., Sami, M. and Dadhich, N.K., 2003, Cosmological dynamics of a phantom field, Phys. Rev., D29, 023522

    ADS  Google Scholar 

  73. 73.

    Singh, S., 2004, Big Bang, Fourth Estate

  74. 74.

    Tetrode, H., 1922, Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik, Z. Phys., 10, 317–328

    ADS  Article  Google Scholar 

  75. 75.

    Wheeler, J. and Feynman, R., 1945, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys., 17, 157–181

    ADS  Article  Google Scholar 

  76. 76.

    Wheeler, J. and Feynman, R., 1949, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys., 21, 425–433

    ADS  Article  MATH  Google Scholar 

  77. 77.

    Zel’dovich, Ya.B. and Shandarin, S.F., 1989, The large-scale structure of the universe, Rev. Mod. Phys., 61, 185–220

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jayant V. Narlikar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narlikar, J.V. The evolution of modern cosmology as seen through a personal walk across six decades. EPJ H 43, 43–72 (2018). https://doi.org/10.1140/epjh/e2017-80048-5

Download citation