Analysis of the Jun Ishiwara’s “The universal meaning of the quantum of action”

Article
  • 13 Downloads

Abstract

Here, we present an analysis of the paper “Universelle Bedeutung des Wirkungsquantums” (The universal meaning of the quantum of action), published by Jun Ishiwara in German in the “Proceedings of Tokyo Mathematico-Physical Society 8 (1915) 106–116”. In his work, Ishiwara, established in the Sendai University, Japan, proposed – simultaneously with Arnold Sommerfeld, William Wilson and Niels Bohr in Europe – the phase-space-integral quantization, a rule that would be incorporated into the old-quantum-theory formalism. The discussions and analysis render this paper fully accessible to undergraduate students of physics with elementary knowledge of quantum mechanics.

References

  1. 1.
    F. Aaserud and J.L. Heilbron, Love, literature and the quantum atom: Niels Bohr’s 1913 trilogy revisited (Oxford University Press, Oxford, 2013) Google Scholar
  2. 2.
    S. Abiko, “Ishiwara’s contributions to early quantum theory and the reception of quantum theory in Japan”, 2015, Available on http://researchmap.jp/?action=cv_download_main&upload_id=52968 (accessed on October 22, 2015)
  3. 3.
    A.B. Arons and M.B. Pepard, “Einstein’s proposal of the photon concept – a translation of the Annalen der Physik paper of 1905”, American Journal of Physics 33, 367–374 (1965) ADSCrossRefGoogle Scholar
  4. 4.
    M. Badino and J. Navarro (eds.), Research and pedagogy: a history of quantum physics through its textbooks (Edition Open Access, Berlin, 2013) Google Scholar
  5. 5.
    L. Banet, “Evolution of the Balmer series”, American Journal of Physics 34, 463–503 (1966) CrossRefGoogle Scholar
  6. 6.
    L. Banet, “Balmer’s manuscripts and the construction of his series”, American Journal of Physics 38, 821–828 (1970) ADSCrossRefGoogle Scholar
  7. 7.
    B. Bhattacharyya, “Looking back into Bohr’s atom”, European Journal of Physics 27, 497–500 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    M. Bucher, “Rise and premature fall of the old quantum theory”, arXiv:0802.1366 (2008)
  9. 9.
    N. Bohr, “On the constitution of atoms and molecules”, Philosophical Magazine 26, 1–25 (1913) CrossRefMATHGoogle Scholar
  10. 10.
    N. Bohr, “On the constitution of atoms and molecules”, Philosophical Magazine 26, 476–502 (1913) CrossRefMATHGoogle Scholar
  11. 11.
    N. Bohr, “On the constitution of atoms and molecules”, Philosophical Magazine 26, 857–875 (1913) CrossRefMATHGoogle Scholar
  12. 12.
    N. Bohr, Textos fundamentais da física moderna – Sobre a constituição de átomos e moléculas (Fundação Calouste Gulbenkian, Lisbon, 1963) Google Scholar
  13. 13.
    L. de Broglie and L. Brillouin, Selected papers on wave mechanics (Blackie and Son Limited, London, 1929) Google Scholar
  14. 14.
    L.A. Castro, C.A. Brasil and R.J. Napolitano, “Elliptical orbits in the phase-space quantization”, Revista Brasileira de Ensino de Física 38, e3318 (2016) (open access) CrossRefGoogle Scholar
  15. 15.
    O. Darrigol, From c-numbers to q-numbers: The classical analogy in the history of quantum theory (University of California Press, Berkeley, 1992) Google Scholar
  16. 16.
    P. Debye and A. Sommerfeld, “Theorie des lichtelektrischen Effektes vom Standpunkt des Wirkungsquantums”, Annalen der Physik 346, 873–930 (1913) ADSCrossRefMATHGoogle Scholar
  17. 17.
    P.A.M. Dirac, “On the theory of quantum mechanics”, Proceedings of the Royal Society of London A 112, 661–677 (1926) ADSCrossRefMATHGoogle Scholar
  18. 18.
    P.A.M. Dirac, “The Quantum Theory of the Electron”, Proceedings of the Royal Society of London A 117, 610–624 (1928) ADSCrossRefMATHGoogle Scholar
  19. 19.
    A. Duncan and M. Janssen, “The trouble with the orbits: The Stark effect in the old and the new quantum theory”, Studies in History and Philosophy of Science 48, 68–83 (2014) ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    M. Eckert, “How Sommerfeld extended Bohr’s model of the atom 1913–1916”, European Physical Journal H 39, 141–156 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    A. Einstein and Y.A. Onu, “How I created the theory of relativity”, Physics Today 35, 45–47 (1982) CrossRefGoogle Scholar
  22. 22.
  23. 23.
    http://alberteinstein.info (accessed on November 12, 2015)
  24. 24.
    R. Eisberg and R. Resnick, Fundamentals of Modern Physics (John Wiley and Sons, New York, 1961) Google Scholar
  25. 25.
    B. D’Espagnat, Conceptual foundations of quantum mechanics (Perseus Books, Reading, 1999) Google Scholar
  26. 26.
    B. Feldens, P.M. Cardoso Dias and W.M. Soares Santos, “E assim se fez o quantum…/ Let there be quantum”, Revista Brasileira de Ensino de Física 22, 2602 (2010) (open access) Google Scholar
  27. 27.
    A.L. Fetter and J.D. Walecka, Theoretical mechanics of particles and continua (Dover, Mineola, 2003) Google Scholar
  28. 28.
    R. Feynman, The character of physical law (The M.I.T. Press, Cambridge, 1985) Google Scholar
  29. 29.
    L. Frédéric and K. Roth, Japan Encyclopedia (Harvard University Press Reference Library, 2002) Google Scholar
  30. 30.
    O. Freire Jr., O. Pessoa Jr., J.L. Bromberg, Teoria quântica - estudos històricos e implicações culturais (EDUEPB, Campina Grande, 2011) Google Scholar
  31. 31.
    G. Gamow, Thirty years that schock physics – The story of quantum theory (Dover Publications Inc., New York, 1985) Google Scholar
  32. 32.
    D. ter Haar. The old quantum theory (Pergamon Press Ltd., Oxford, 1967) Google Scholar
  33. 33.
    G.Q. Hassoun and D.H. Kobe, “Synthesis of the Planck and Bohr formulations of the correspondence principle”, American Journal of Physics 57, 658–662 (1969) ADSCrossRefGoogle Scholar
  34. 34.
    A. Hermann, The genesis of quantum theory 1899-1913 (The MIT Press, Cambridge, 1971) Google Scholar
  35. 35.
    D. Hu, “The reception of Relativity in China”, Isis 98, 539–557 (2007) MathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Ishiwara, “Die universelle Bedeutung des Wirkungsquantums”, Proceedings of Tokyo Mathematico-Physical Society 8, 106–116 (1915) MATHGoogle Scholar
  37. 37.
    J. Ishiwara,“The universal meaning of the quantum of action”, European Physics Journal H, DOI: 10.1140/epjh/e2017-80041-1
  38. 38.
  39. 39.
    M. Jammer, The conceptual development of quantum mechanics (McGraw-Hill Book Company, New York, 1966) Google Scholar
  40. 40.
    M. Jammer, The philosophy of quantum mechanics (John Wiley and Sons, New York, 1974) Google Scholar
  41. 41.
    C. Joas and C. Lehner, “The classical roots of wave mechanics: Schrödinger’s transformations of the optical-mechanical analogy”, Studies in History and Philosophy of Modern Physics 40, 338–351 (2009) ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    C. Jungnickel and R. McCormmach, Intellectual mastery of nature – theoretical physics from Ohm to Einstein (The University of Chicago Press, Chicago, 1986) Google Scholar
  43. 43.
    R. Köberle, “Sobre a gênese da mecânica ondulatòria”, Revista Brasileira de Física 9, 243–273 (1979) (open access) Google Scholar
  44. 44.
    H. Kragh, Niels Bohr and the quantum atom – The Bohr model of atomic structure (Oxford University Press, Oxford, 2012) Google Scholar
  45. 45.
    H. Kragh, “Niels Bohr between physics and chemistry”, Physics Today 66, 36–41 (2013) ADSCrossRefGoogle Scholar
  46. 46.
    F. Laloë, “Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems”, American Journal of Physics 69, 655–701 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    R.L. Liboff, “The correspondence principle revisited”, Physics Today 37, 50–55 (1984) CrossRefGoogle Scholar
  48. 48.
    H.A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat (Dover Publications, Phoenix, 2004) Google Scholar
  49. 49.
    M. Low, “From Einstein to Shirakawa: The Nobel prize in Japan”, Minerva 39, 445–460 (2001) CrossRefGoogle Scholar
  50. 50.
    G. Ludwig, Wave mechanics (Pergamon Press, Oxford, 1968) Google Scholar
  51. 51.
    A.J. Makowski, “A brief survey of various formulations of the correspondence principle”, European Journal of Physics 27, 1133–1139 (2006) ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Mehra, H. Rechenberg, The historical development of quantum theory, vol. 1 (Springer-Verlag Inc., New York, 1982) Google Scholar
  53. 53.
    J. Mehra, The golden age of theoretical physics (World Scientific Publishing Company, Singapore, 2001) Google Scholar
  54. 54.
    R.A. Millikan and W.H. Souder, “Effect of residual gases on contact e.m.f.’s and photo-currents”, Physical Review 4, 73–75 (1914) ADSGoogle Scholar
  55. 55.
    R.A. Millikan, “Einstein’s photoelectric equation and contact electromotive force”, Physical Review 7, 18–32 (1916) ADSCrossRefGoogle Scholar
  56. 56.
    R.A. Millikan, “A direct photoelectric determination of Planck’s ’h’ ”, Physical Review 7, 355–388 (1916) ADSCrossRefGoogle Scholar
  57. 57.
    R.A. Millikan, “The distinction between intrinsic and spurious contact e.m.f.s and the question of the absorption of radiation by metals in quanta”, Physical Review 18, 236–244 (1921) ADSCrossRefGoogle Scholar
  58. 58.
  59. 59.
    H. Nagaoka, “Kinetics of a system of particles illustrating the line and the band spectrum and the phenomena of radioactivity”, Philosophical Magazine 7, 445–455 (1904) CrossRefMATHGoogle Scholar
  60. 60.
    H. Nikolic, “Quantum mechanics: myths and facts”, Foundations of Physics 37, 1563–1611 (2007) ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    D.D. Nolte, “The tangled tale of phase space”, Physics Today 63, 33–38 (2010) CrossRefGoogle Scholar
  62. 62.
    R. Omnés, The interpretation of quantum mechanics (Princeton University Press, Princeton, 1994) Google Scholar
  63. 63.
    A. Pais, Subtle is the Lord: The science and the life of Albert Einstein (Oxford University Press, Oxford, 2005) Google Scholar
  64. 64.
    F.A.G. Parente, A.C.F. dos Santos and A.C. Tort, “Os 100 anos do átomo de Bohr/One hundred years of Bohr’s atom”, Revista Brasileira de Ensino de Física 35, 4301 (2013) (open access) CrossRefGoogle Scholar
  65. 65.
    O. Pessoa Jr., Conceitos de física quântica - vol. 1 (Editora Livraria da Física, São Paulo, 2006) Google Scholar
  66. 66.
    O. Pessoa Jr., Conceitos de física quântica - vol. 2 (Editora Livraria da Física, São Paulo, 2006) Google Scholar
  67. 67.
    N. Pinto Neto, Teorias e interpretações da mecânica quântica (Editora Livraria da Física, São Paulo, 2010) Google Scholar
  68. 68.
    M. Planck, “Sobre um aperfeiçoamento da equação de Wien para o espectro”, Revista Brasileira de Ensino de Física 22, 536–537 (2000) (open access) Google Scholar
  69. 69.
    M. Planck, “Sobre a lei de distribuição de energia no espectro normal”, Revista Brasileirade Ensino de Física 22, 538–542 (2000) (open access) Google Scholar
  70. 70.
  71. 71.
    M. Schenberg, Pensando a física (Editora Brasiliense, São Paulo, 1984) Google Scholar
  72. 72.
    E. Schrödinger, Collected papers on wave mechanics (Chelsea Publishing Company, New York, 1978) Google Scholar
  73. 73.
    S. Seth, “Crafting the quantum: Arnold Sommerfeld and the older quantum theory”, Studies in History and Philosophy of Science 39, 335–349 (2008) ADSCrossRefGoogle Scholar
  74. 74.
    N. Sigeko, “Ishiwara Jun’s quantum theory 1911-1915”, Historia Scientiarum 10, 120–129 (2000) MathSciNetMATHGoogle Scholar
  75. 75.
    A. Sommerfeld, “Das Plancksche Wirkungsquantum und seine allgemeine Bedeutung für die Molekülphysik”, Physikalische Zeitschrift 12, 1057–1069 (1911) MATHGoogle Scholar
  76. 76.
    A. Sommerfeld, “Zur Quantentheorie der Spektrallinien”, Annalen der Physik 51, 1–94 (1916) ADSCrossRefGoogle Scholar
  77. 77.
    A. Sommerfeld, “Zur Quantentheorie der Spektrallinien”, Annalen der Physik 51, 125–167 (1916) ADSCrossRefGoogle Scholar
  78. 78.
    A. Sommerfeld, Atomic Structure and Spectral Lines (Methuen & Co. Inc., London, 1923) Google Scholar
  79. 79.
    A. Sommerfeld, “On the theory of the Balmer series”, European Physical Journal H 39, 157–177 (2014) ADSCrossRefGoogle Scholar
  80. 80.
    A. Sommerfeld, “The fine structure of Hydrogen and Hydrogen-like lines”, European Physical Journal H 39, 179–204 (2014) ADSCrossRefGoogle Scholar
  81. 81.
    N. Straumann, “On the first Solvay Congress in 1911”, European Physical Journal H 36, 379–399 (2011) ADSCrossRefGoogle Scholar
  82. 82.
    N. Studart, “A invenção do conceito de quantum de energia segundo Planck”, Revista Brasileira de Ensino de Física 22, 523–535 (2000) (open access) Google Scholar
  83. 83.
    R H. Stuewer, “Non-Einsteinian interpretations of the photoelectric effect”, Minnesota Studies in the Philosophy of Science 5, 246–263 (1970) Google Scholar
  84. 84.
    A. Svidzinsky, M. Scully and D. Herschbach, “Bohr’s molecular model, a century later”, Physics Today 67, 33–39 (2014) ADSCrossRefGoogle Scholar
  85. 85.
  86. 86.
    S.-I. Tomonaga, Quantum mechanics, vol. 1 (North-Holland Publishing Company, Amsterdam, 1968) Google Scholar
  87. 87.
    H.H. Voigt (ed.), Karl Schwarzschild Gesammelte Werke collected works, vol. 1 (Springer-Verlag, Berlin, 1992) Google Scholar
  88. 88.
    B.L. van der Waerden, Sources of quantum mechanics (Dover Publications Inc., Mineola, 2007) Google Scholar
  89. 89.
    L. Wessels, “Schrödinger’s route to wave mechanics”, Studies in History and Philosophy of Science 10, 311–340 (1977) CrossRefGoogle Scholar
  90. 90.
    B.R. Wheaton, The tiger and the shark - Empirical roots of wave-particle dualism (Cambridge University Press, Cambridge, 2008) Google Scholar
  91. 91.
    J.A. Wheeler and W.H. Zurek, Quantum theory and measurement (Princeton University Press, Princeton, 1983) Google Scholar
  92. 92.
    W. Wilson, “The quantum-theory of radiation and line spectra”, Philosophical Magazine 29, 795–802 (1915) CrossRefGoogle Scholar
  93. 93.
    W. Wilson, “The quantum of action”, Philosophical Magazine 31, 156–162 (1916) CrossRefGoogle Scholar
  94. 94.
    http://catalog.hathitrust.org/record/001482222 (accessed on February 6, 2017)

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Philosophisch - Historische FakultätStuttgartGermany
  2. 2.São Carlos Institute of Physics (IFSC), University of São Paulo (USP)São CarlosBrazil

Personalised recommendations