Skip to main content

A life in statistical mechanics

Part 1: From Chedar in Taceva to Yeshiva University in New York

Abstract

This is the first part of an oral history interview on the lifelong involvement of Joel Lebowitz in the development of statistical mechanics. Here the covered topics include the formative years, which overlapped the tragic period of Nazi power and World War II in Europe, the emigration to the United States in 1946 and the schooling there. It also includes the beginnings and early scientific works with Peter Bergmann, Oliver Penrose and many others. The second part will appear in a forthcoming issue of Eur. Phys. J. H.

References

  1. Aharonov, Y., P.G. Bergmann and J.L. Lebowitz. 1964. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. 134: 1410–1416.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. Aharonov, Y., S. Popescue and J. Tollaksen. 2010. A time-symmetric formulation of quantum mechanics. Physics Today 63: 27–33.

    Article  Google Scholar 

  3. Bergmann, P.G. 1951. Generalized Statistical Mechanics. Phys. Rev. 84: 1026–1033.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. Bergmann, P.G. and J.L. Lebowitz. 1955. New Approach to Nonequilibrium Processes. Phys. Rev. 99: 578–587.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. Bergmann, P.G. and A.C. Thomson. 1953. Generalized Statistical Mechanics and the Onsager Relations. Phys. Rev. 91: 180–184.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. Carlen, E.A., R. Esposito, J.L. Lebowitz, R. Marra and C. Mouhot. 2016. Approach to the steady state in kinetic models with thermal reservoirs at different temperatures. arXiv:1609.00580[math-ph]

  7. Döblin, W. 1937. Le cas discontinu des probabilités en chaine. Publications de la Faculté des Sciences de l’Université Masaryk (Brno) 236: 1–13.

    Google Scholar 

  8. Doob, J.L. 1953. Stochastic Processes. John Wiley & Sons, New York.

  9. Gross, E.P. and J.L. Lebowitz, 1956. Quantum Theory of Dielectric Relaxation. Phys. Rev. 104: 1528–1531.

    ADS  Article  MATH  Google Scholar 

  10. Helfand, E., H. Reiss, H.L. Frisch and J.L. Lebowitz, 1960. Scaled Particle Theory of Fluids. The Journal of Chemical Physics 33 (5): 1379-1385

    ADS  MathSciNet  Article  Google Scholar 

  11. Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1963a. On the van der Waals Theory of the Vapor- Liquid Equilibrium. I. Discussion of a One-Dimensional Model. J. Math. Phys. 4: 216–228.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1963b. On the van derWaals Theory of the Vapor-Liquid Equilibrium. II. Discussion of the Distribution Functions. J. Math. Phys. 4: 229–247.

    ADS  Article  MATH  Google Scholar 

  13. Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1964. On the van der Waals Theory of the Vapor-Liquid Equilibrium. II. Discussion of the Critical Region. J. Math. Phys. 5: 60–74.

    ADS  Article  MATH  Google Scholar 

  14. Khinchin, A.Y. 1949. Mathematical Foundations of Statistical Mechanics. Translated from Russian by George Gamow. Dover Publications.

  15. Lax, M. and J.L. Lebowitz. 1954. Moment Singularity Analysis of Vibration Spectra. Phys. Rev. 96: 594–958.

    ADS  Article  MATH  Google Scholar 

  16. Lebowitz, J.L. 1964. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres. Phys. Rev. 133: 895–899.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. Lebowitz, J.L. and P.G. Bergmann. 1957. Irreversible Gibbsian ensembles. Ann. Phys. 1: 1–23.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. Lebowitz, J.L., T. Burke and E. Lieb. 1966. Phase Transition in a Model Quantum System: Quantum Corrections to the Location of the Critical Point. Phys. Rev. 149: 118–122.

    ADS  Article  Google Scholar 

  19. Lebowitz, J.L., A. Mazel and E. Presutti. 1999. Liquid-vapor phase transitions for systems with finite-range interactions. J. Stat. Phys. 94: 955–1025.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. Lebowitz, J.L. and J.S. Rowlinson. 1964. Thermodynamic Properties of Mixtures of Hard Spheres. J. Chem. Phys. 41: 133–138.

    ADS  Article  Google Scholar 

  21. Lebowitz, J.L. and L. Onsager. 1958. Low Temperature Physics & Chemistry. Proceedings of the Fifth International Conference on Low Temperature Physics and Chemistry. The University of Wisconsin Press, Madison, 50.

  22. Lebowitz, J.L. and O. Penrose. 1966. Rigorous Treatment of the Van der Waals Maxwell Theory of the Liquid-Vapor Transition. J. Math. Phys. 7: 98–113.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. Lieb E. 1966. Quantum-Mechanical Extension of the Lebowitz-Penrose Theorem on the Van der Waals Theory J. Math. Phys. 7: 1016–1024.

    ADS  MathSciNet  Article  Google Scholar 

  24. Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65: 117–149.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. Onsager, L. and S. Machlup. 1953. Fluctuations and Irreversible Processes. Phys. Rev. 91: 1505–1512.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. Panofsky, W.K.H. and M. Phillips. 1955. Classical Electricity and Magnetism. Dover Publications.

  27. Penrose, O. and J.L. Lebowitz. 1971. Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys. 3: 211–236.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. Pirogov, S.A. and Ya.G. Sinai. 1975. Phase diagrams of classical lattice systems (Russian). Theor. Math. Phys. 25: 358–369.

    Article  Google Scholar 

  29. Pirogov, S.A. and Ya.G. Sinai. 1976. Phase diagrams of classical lattice systems. Continuation (Russian). Theor. Math. Phys. 26: 61–76.

    Article  Google Scholar 

  30. Presutti, E. 2009. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer.

  31. Reiss, H., H.L. Frisch and L. Lebowitz. 1959. Statistical Mechanics of Rigid Spheres. J. Chem. Phys. 31: 369–380.

    ADS  MathSciNet  Article  Google Scholar 

  32. Ruelle D. 1971. Existence of a Phase Transition in a Continuous Classical System. Phys. Rev. Lett. 27: 1040–1041.

    ADS  Article  Google Scholar 

  33. Susskind, L. 2005. The Cosmic Landscape. String theory and the illusion of intelligent design. Little, Brown and Company.

  34. Van Hove, L. 1953. The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal. Phys. Rev. 89: 1189–1193.

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel L. Lebowitz or Luisa Bonolis.

Additional information

The text presented here has been revised by the authors based on the original oral history interview conducted by Luisa Bonolis and recorded in Paris, France, 11–16 October 2014.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebowitz, J.L., Bonolis, L. A life in statistical mechanics. EPJ H 42, 1–21 (2017). https://doi.org/10.1140/epjh/e2017-80006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2017-80006-9