Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

Article
Part of the following topical collections:
  1. Plasma physics in the 20th century as told by players

Abstract

The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam J.-C., G. Laval and D. Pesme. 1979a. Reconsideration of quasilinear theory. Phys. Rev. Lett. 43: 1671-1675.ADSCrossRefGoogle Scholar
  2. 2.
    Adam J.-C., M.N. Bussac and G. Laval. 1979b. Stabilization of a linearly unstable mode by resonant coupling to damped modes. Intrinsic Stochasticity in Plasmas, Les Editions de Physique, Orsay (France), pp. 415-423.Google Scholar
  3. 3.
    Adam J.-C., G. Laval and D. Pesme. 1981. Effets des interactions résonnantes ondes particules en turbulence faible des plasmas. Ann. Phys. 6: 319.Google Scholar
  4. 4.
    Adam J.-C., A. Gourdin-Serveniere and G. Laval. 1982. Efficiency of resonant absorption of electromagnetic waves in an inhomogeneous plasma. Phys. Fluids 25: 376-383.ADSMATHCrossRefGoogle Scholar
  5. 5.
    Adam J.-C., A. Héron, S. Guérin et al. 1997. Anomalous Absorption of very high-intensity Laser pulse Propagating through a moderately dense plasma. Phys. Rev. Lett. 78: 4765-4768.ADSCrossRefGoogle Scholar
  6. 6.
    Adam J.-C., A. Héron, G. Laval et al. 2000. Opacity of an underdense plasma due to the parametric instabilities of an ultra- intense laser pulse. Phys. Rev. Lett. 5: 3598-3601.ADSCrossRefGoogle Scholar
  7. 7.
    Akhiezer A.I. and R.V. Polovin. 1956. Theory of wave motion of an electron plasma. Soviet Phys. JETP 3: 696-705.MathSciNetMATHGoogle Scholar
  8. 8.
    Andreev A.A. and V.T. Tikhonchuk. 1989. Effect of trapped particles on stimulated Brillouin scattering in a plasma. Sov. Phys. JETP 68: 1135-1142.Google Scholar
  9. 9.
    Andreev A.A., C. Riconda, V.T. Tikhonchuk et al. 2006. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas 13: 053110.ADSCrossRefGoogle Scholar
  10. 10.
    Bakai A.S., and Y.S. Sigov. 1977. Collisionless relaxation of plasma with unstable function of electron-distribution function. Dokl. Akad. Nauk. SSR 237: 1326-1329 [Sov. Phys. Dokl. 22: 734-737].ADSGoogle Scholar
  11. 11.
    Baker K.L., R.P. Drake, B.S. Bauer et al. 1997. Observation of the Langmuir decay instability driven by stimulated Raman scattering. Phys. Plasmas 4: 3012-3020.ADSCrossRefGoogle Scholar
  12. 12.
    Baldis H.A., D.M. Villeneuve, C. Labaune et al. 1991. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas. Phys. Fluids B 3: 2341-48.ADSCrossRefGoogle Scholar
  13. 13.
    Barr H.C., P. Mason and D.M. Parr. 1999. Electron parametric instabilities driven by relativistically intense laser light in plasma. Phys. Rev. Lett. 83: 1606-09.ADSCrossRefGoogle Scholar
  14. 14.
    Berger R.L., S. Brunner, T. Chapman et al. 2013. Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves. Phys. Plasmas 20: 032107.ADSCrossRefGoogle Scholar
  15. 15.
    Berndtson J.T., J.A. Heikkinen, S.J. Karttunen et al. 1994. Analysis of velocity diffusion of electrons with Vlasov-Poisson simulations. Plasma Phys. Control. Fusion 36: 57.ADSCrossRefGoogle Scholar
  16. 16.
    Bernstein I.B., and F. Engelmann. 1966. Quasi-Linear Theory of Plasma Waves. Phys. Fluids 9: 937-952.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Besse N., Y. Elskens, D. Escande et al. 2011. Validity of quasilinear theory: refutations and new numerical confirmation. Plasma Phys. Control. Fusion 53: 025012-48.ADSCrossRefGoogle Scholar
  18. 18.
    Bonnaud G., D. Pesme and R. Pellat. 1990. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma. Phys. Fluids B 2: 1618-25.ADSCrossRefGoogle Scholar
  19. 19.
    Brossier P., P. Deschamps, R. Gravier et al. 1971. Experimental Observation of Drift Instabilities in a Collisionless Plasma. Phys. Rev. Lett. 26: 124-127.ADSCrossRefGoogle Scholar
  20. 20.
    Bussac M.N. 1982. Asymptotic Solutions of the Nonlinear Three-Wave System. Phys. Rev. Lett. 49: 1939-1942.ADSCrossRefGoogle Scholar
  21. 21.
    Bussac M.N., P. Lochak, C. Meunier et al. 1985. Soliton Generation in the Forced Non-linear Schrodinger Equation. Physica D 17: 313-322.ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Casanova M., G. Laval, R. Pellat et al. 1985. Self-Generated Loss of Coherency in Brillouin Scattering and Reduction of Reflectivity. Phys. Rev. Lett. 54: 2230-2233.ADSCrossRefGoogle Scholar
  23. 23.
    Chirikov B.V. 1979. A Universal Instability of many dimensional oscillator systems. Phys. Rep. 52: 263-379.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Cohen B.I. and C. Max. 1979. Stimulated scattering of light by ion modes in a homogeneous plasma: Space-time evolution. Phys. Fluids 22: 1115-1132.ADSMATHCrossRefGoogle Scholar
  25. 25.
    Cohen B.I., L. Divol, A.B. Langdon et al. 2005. Saturation of Stimulated Brillouin backscattering in two-dimensional kinetic ion simulations. Phys. Plasmas 12: 052703.ADSCrossRefGoogle Scholar
  26. 26.
    Cohen B.I., E.A. Williams, R.L. Berger et al. 2009a. Stimulated Brillouin backscattering and ion acoustic wave secondary instability. Phys. Plasmas 16: 032701-18.ADSCrossRefGoogle Scholar
  27. 27.
    Cohen B.I., E.A. Williams, R.L. Berger et al. 2009b. Erratum : “Stimulated Brillouin backscattering and ion acoustic wave secondary instability” [Phys. Plasmas 16: 032701 (2009)]. Phys. Plasmas 16: 089902.ADSCrossRefGoogle Scholar
  28. 28.
    Couairon A. and P. Mora. 2001. Absolute and convective nature of the modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 8: 3434-3442.ADSCrossRefGoogle Scholar
  29. 29.
    Crouseilles N., Th. Respaud and E. Sonnendrücker. 2009. A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Commun. 180: 1730-1745.ADSMathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Denavit J. 1972. Numerical simulation of plasmas with periodic smoothing in phase space. J. Comput. Phys. 9: 75-98.ADSMATHCrossRefGoogle Scholar
  31. 31.
    Depierreux S., J. Fuchs, Ch. Labaune et al. 2000. First Observation of Ion Acoustic Waves Produced by the Langmuir Decay Instability. Phys. Rev. Lett. 84: 2869-2872.ADSCrossRefGoogle Scholar
  32. 32.
    Detering F., J.-C. Adam, A. Heron et al. 2006. Kinetic effects in stimulated Brillouin scattering. J. Phys. IV 133: 339-342.Google Scholar
  33. 33.
    Dewar R.L. 1972. Frequency Shift Due to Trapped Particles. Phys. Fluids 15: 712-714.ADSCrossRefGoogle Scholar
  34. 34.
    Diamond P.H., S.I. Itoh and K. Itoh. 2010. Modern Plasma Physics 1: Physical Kinetics of Turbulent Plasmas (Cambridge University Press, Cambridge, 2010).Google Scholar
  35. 35.
    Divol L., B.I. Cohen, E.A. Williams et al. 2003a. Nonlinear saturation of stimulated Brillouin scattering for long time scales. Phys. Plasmas 10: 3728-3732.ADSCrossRefGoogle Scholar
  36. 36.
    Divol L., R.L. Berger, B.I. Cohen et al. 2003b. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Phys. Plasmas 10: 1822-1828.ADSCrossRefGoogle Scholar
  37. 37.
    Doxas I. and J.R. Cary. 1997. Numerical observation of turbulence enhanced growth rates. Phys. Plasmas 4: 2508-18.ADSCrossRefGoogle Scholar
  38. 38.
    Drake J.F., P.K. Kaw, Y.C. Lee et al. 1974. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17: 778-785.ADSCrossRefGoogle Scholar
  39. 39.
    Drake R.P., E.A. Williams, P.E. Young et al. 1988. Evidence that stimulated Raman scattering in laser-produced plasmas is an absolute instability. Phys. Rev. Lett. 60: 1018-1021.ADSCrossRefGoogle Scholar
  40. 40.
    Drummond W.E. and D. Pines. 1962. Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3: 1049-57.Google Scholar
  41. 41.
    DuBois D.F. 1981. Renormalized plasma turbulence theory: A quasiparticle picture. Phys. Rev. A 23: 865-882.ADSCrossRefGoogle Scholar
  42. 42.
    DuBois D.F. and D. Pesme. 1985. Direct interaction approximation for Vlasov turbulence from the Kadomtsev weak coupling approximation. Phys. Fluids 28: 1305-1317.ADSMATHCrossRefGoogle Scholar
  43. 43.
    Dupree T.H. 1966. A Perturbation Theory for Strong Plasma Turbulence. Phys. Fluids 9: 1773-1782.ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Dupree T.H. 1970. Theory of resistivity in collisionless plasma. Phys. Rev. Lett. 25: 789-792.ADSCrossRefGoogle Scholar
  45. 45.
    Escande D. and F. Doveil. 1981. Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems. J. Stat. Phys. 26: 257-284.ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Eyink E. and U. Frisch. 2011. A Voyage Through Turbulence. Edited by P. Davidson, Y. Kaneda, K. Moffat and K. Sreenivasaan (Cambridge University Press), pp. 329-364.Google Scholar
  47. 47.
    Falfovich V. 2011. A Voyage Through Turbulence. Edited by P. Davidson, Y. Kaneda, K. Moffat and K. Sreenivasaan (Cambridge University Press), pp. 209-236.Google Scholar
  48. 48.
    Faure J., Y. Glinec, A. Pukhov et al. 2004. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431: 541-544.ADSCrossRefGoogle Scholar
  49. 49.
    Forslund D., J. Kindel and E. Lindman. 1975. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18: 1002-1016.ADSCrossRefGoogle Scholar
  50. 50.
    Fortov V.E. 2016. High-Power Lasers in High-Energy-Density Physics. Springer Ser. Mater. Sci. 216: 167-275.ADSCrossRefGoogle Scholar
  51. 51.
    Fouquet Th. and D. Pesme. 2008. Increase of the Backward Raman Reflectivity Caused by the Langmuir Decay Instability in an Inhomogeneous Plasma: The Loss of Gradient Stabilization. Phys. Rev. Lett. 100: 055006-10.ADSCrossRefGoogle Scholar
  52. 52.
    Fuchs J., G. Malka, J.-C. Adam et al. 1998. Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma. Phys. Rev. Lett. 80: 1658-1661.ADSCrossRefGoogle Scholar
  53. 53.
    Garban-Labaune C., E. Fabre, C.E. Max et al. 1982. Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection. Phys. Rev. Lett. 48: 1018-1021.ADSCrossRefGoogle Scholar
  54. 54.
    Garnier J. 1999. Statistics of the hot spots of smoothed beams produced by random phase plates revisited. Phys. Plasmas 6: 1601-10.ADSCrossRefGoogle Scholar
  55. 55.
    Ginzburg V.I. 1970. The Propagation of Electromagnetic Waves in Plasmas, 2nd Ed. (Pergamon, New York).Google Scholar
  56. 56.
    Glenzer S.H., R.L. Berger, L.M. Divol et al. 2001. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas 8: 1692-1696.ADSCrossRefGoogle Scholar
  57. 57.
    Grismayer T., A. Couairon, P. Mora et al. 2004. Absolute and convective nature of Raman instability in relativistic hot plasmas. Phys. Plasmas 11: 4814-4823.ADSCrossRefGoogle Scholar
  58. 58.
    Guérin S., G. Laval, P. Mora et al. 1995. Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2: 2807-2814.ADSCrossRefGoogle Scholar
  59. 59.
    Guérin S., P. Mora, J.-C. Adam et al. 1996. Propagation of ultra-intense laser pulses through overdense plasma layers. Phys. Plasmas 3: 2693-2701.ADSCrossRefGoogle Scholar
  60. 60.
    Guzdar P., C.S. Liu and R. Lehmberg. 1996. Stimulated Brillouin scattering in the strong coupling regime. Phys. Plasmas 3: 3414-3419.ADSCrossRefGoogle Scholar
  61. 61.
    Hartmann D.A., C.F. Driscoll, T.M. O’Neil et al. 1995. Measurements of the weak warm beam instability. Phys. Plasmas 2: 654-677.ADSCrossRefGoogle Scholar
  62. 62.
    Hasegawa A. and K. Mima. 1978. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21: 87-92.ADSMathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Hasselmann K. 1966. Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4: 1-32.ADSCrossRefGoogle Scholar
  64. 64.
    Horton W. 1999. Drift waves and transport. Rev. Mod. Phys. 71: 735-841.ADSCrossRefGoogle Scholar
  65. 65.
    Hüller S. 1991a. Stimulated Brillouin scattering off nonlinear ion acoustic waves. Phys. Fluids B 3: 3317-3330.ADSCrossRefGoogle Scholar
  66. 66.
    Hüller S. 1991b. Nonstationary stimulated Brillouin backscattering. Phys. Fluids B 3: 3339-3352.ADSCrossRefGoogle Scholar
  67. 67.
    Ikezi H., K. Schwarzenegger, A.L. Simons et al. 1978. Nonlinear self-modulation of ion-acoustic waves. Phys. Fluids 21: 239-248.ADSCrossRefGoogle Scholar
  68. 68.
    Kadomtsev B.B. and O.P. Pogutse. 1971. Theory of Beam-Plasma Interaction. Phys. Fluids 14: 2470-2475.ADSCrossRefGoogle Scholar
  69. 69.
    Kaw P. and J. Dawson. 1970. Relativistic non-linear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13: 472-481.ADSCrossRefGoogle Scholar
  70. 70.
    Kim J.H. and P.W. Terry. 2011. A self-consistent three-wave coupling model with complex linear frequencies. Phys. Plasmas 18: 092308ADSCrossRefGoogle Scholar
  71. 71.
    Kraichnan R.H. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mechan. 5: 497-543.ADSMathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Kruer W.L. 1988. The physics of laser plasma interactions. Frontiers in Physics (Addison-Wesley Publishing Co), Vol. 73.Google Scholar
  73. 73.
    Labaune C., S. Baton, T. Jalinaud et al. 1992. Filamentation in long scale length plasmas: Experimental evidence and effects of laser spatial incoherence. Phys. Fluids B 4: 2224-31.ADSCrossRefGoogle Scholar
  74. 74.
    Labaune C., H.A. Baldis, B.S. Bauer et al. 1998. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma. Phys. Plasmas 5: 234-242.ADSCrossRefGoogle Scholar
  75. 75.
    Landau L. 1946. On the vibrations of the electronic plasma. J. Phys. (USSR) 10: 25.MathSciNetMATHGoogle Scholar
  76. 76.
    Lancia L., J.-R. Marquès, M. Nakatsutsunami et al. 2010. Experimental Evidence of Short Light Pulse Amplification Using Strong-Coupling Stimulated Brillouin Scattering in the Pump Depletion Regime. Phys. Rev. Lett. 104: 025001-04.ADSCrossRefGoogle Scholar
  77. 77.
    Lancia L., A. Giribono, L. Vassura et al. 2016. Signatures of the Self-Similar Regime of Strongly Coupled Stimulated Brillouin Scattering for Efficient Short Laser Pulse Amplification. Phys. Rev. Lett. 116: 075001-04.ADSCrossRefGoogle Scholar
  78. 78.
    Larroche O., M. Casanova, D. Pesme et al. 1986. Soliton emission in the forced non-linear Schrödinger equation. Laser and Particle Beams 4: 545-553.ADSCrossRefGoogle Scholar
  79. 79.
    Laval G., R. Pellat and M. Perulli. 1969. Study of the disintegration of Langmuir waves. Plasma Phys. 11: 579.ADSCrossRefGoogle Scholar
  80. 80.
    Laval G. and R. Pellat. 1972. Plasma Physics. Les Houches (Gordon and Breach, New York, 1972).Google Scholar
  81. 81.
    Laval G., R. Pellat and D. Pesme. 1976. Absolute parametric excitation by an imperfect pump or by turbulence in an inhomogeneous plasma. Phys. Rev. Lett. 36: 192-196.ADSCrossRefGoogle Scholar
  82. 82.
    Laval G., R. Pellat and D. Pesme. 1977. Parametric instabilities in the presence of space-time random fluctuations. Phys. Fluids 20: 2049-2057.ADSMathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Laval G. and D. Pesme. 1983a. Breakdown of quasilinear theory for incoherent 1-D Langmuir waves. Phys. Fluids 26: 52-65.ADSMATHCrossRefGoogle Scholar
  84. 84.
    Laval G. and D. Pesme. 1983b. Inconsistency of quasilinear theory. Phys. Fluids 26: 66-68.ADSMATHCrossRefGoogle Scholar
  85. 85.
    Laval G. and D. Pesme. 1983c. Self-consistency effects in quasilinear theory: a model for turbulent trapping. In Nonlinear and turbulent processes in physics. Volume 1. Nonlinear effects in plasma physics, astrophysics and elementary particle theory.Google Scholar
  86. 86.
    Laval G. and D. Pesme. 1984. Self-consistency effects in quasilinear theory: a model for turbulent trapping. Phys. Rev. Lett. 53: 270-273.ADSCrossRefGoogle Scholar
  87. 87.
    Laval G. and D. Pesme. 1999. Controversies about quasilinear theory. Plasma Phys. Control. Fusion A 41: 239.ADSCrossRefGoogle Scholar
  88. 88.
    Lefebvre E. and G. Bonnaud. 1995. Transparency/Opacity of a solid target illuminated by an ultra-high intensity laser pulse. Phys. Rev. Lett. 74: 2002-2005.ADSCrossRefGoogle Scholar
  89. 89.
    Lehmann G., F. Schluck and K.H. Spatschek. 2012. Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction. Phys. Plasmas 19: 093120.ADSCrossRefGoogle Scholar
  90. 90.
    Liang Y.M. and P.H. Diamond. 1993. Revisiting the validity of quasilinear theory. Phys. Fluids B 5: 4333-4340.ADSCrossRefGoogle Scholar
  91. 91.
    Malkin V.M., G. Shvets and N.J. Fish. 1999. Fast Compression of Laser Beams to Highly Overcritical Powers. Phys. Rev. Lett. 82: 4448-4451.ADSCrossRefGoogle Scholar
  92. 92.
    Malmberg J.H. and C.B. Wharton. 1964. Collisionless Damping of Electrostatic Plasma Waves. Phys. Rev. Lett. 13: 184-187.ADSCrossRefGoogle Scholar
  93. 93.
    Maximov A.V., I.G. Ourdev, D. Pesme et al. 2001. Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering. Phys. Plasmas 8: 1319-1328.ADSCrossRefGoogle Scholar
  94. 94.
    Meunier C., M.N. Bussac, and G. Laval. 1982. Intermittency at the onset of stochasticity in nonlinear resonant coupling processes. Physica D: Nonlinear Phenomena 4: 236-243.ADSMATHCrossRefGoogle Scholar
  95. 95.
    Morales G.J. and T.M. O’Neil. 1972. Nonlinear Frequency Shift of an Electron Plasma Wave. Phys. Rev. Lett. 28: 417-423.ADSCrossRefGoogle Scholar
  96. 96.
    Mouhot C. and C. Villani. 2011. On Landau damping. Acta Mathematica 207: 29-201.MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Nicholson D.R. and A.N. Kaufman. 1974. Parametric Instabilities in Turbulent, Inhomogeneous Plasma. Phys. Rev. Lett. 3: 1207-1210.ADSCrossRefGoogle Scholar
  98. 98.
    O’Neil T.M. 1965. Collisionless Damping of Nonlinear Plasma Oscillations. Phys. Fluids 8: 2255.ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    O’Neil T.M., J.H. Winfrey and J.H. Malmberg. 1971. Nonlinear Interaction of a Small Cold Beam and a Plasma. Phys. Fluids 14: 1204-1212.ADSCrossRefGoogle Scholar
  100. 100.
    Pesme D., G. Laval and R. Pellat. 1973. Parametric Instabilities in Bounded Plasmas. Phys. Rev. Lett. 31: 203-206.ADSCrossRefGoogle Scholar
  101. 101.
    Pesme D. and D.F. DuBois. 1985. Reduced DIA equations for the weak warm beam instability in the strong mode-coupling limit. Phys. Fluids 28: 1318-1341.ADSMATHCrossRefGoogle Scholar
  102. 102.
    Pesme D., W. Rozmus, V.T. Tikhonchuk et al. 2000. Resonant Instability of Laser Filaments in a Plasma. Phys. Rev. Lett. 84: 278-281.ADSCrossRefGoogle Scholar
  103. 103.
    Pesme D., S. Hüller, J. Myatt et al. 2002. Laser-plasma interaction studies in the context of megajoule lasers for inertial fusion. Plasma Phys. Control. Fusion 44: B53-B67.CrossRefGoogle Scholar
  104. 104.
    Pesme D., C. Riconda and V.T. Tikhonchuk. 2005. Parametric instability of a driven ion-acoustic wave. Phys. Plasmas 12: 092101-28.ADSCrossRefGoogle Scholar
  105. 105.
    Pesme D., C. Riconda and V.T. Tikhonchuk. 2009. Erratum: [Parametric instability of a driven ion-acoustic wave. Phys. Plasmas 12: 092101 (2005)]. Phys. Plasmas 12: 089903.ADSCrossRefGoogle Scholar
  106. 106.
    Ping Y., W. Cheng, S. Suckewer et al. 2004. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92: 175007-175010.ADSCrossRefGoogle Scholar
  107. 107.
    Quesnel B., P. Mora, J.-C. Adam et al. 1997a. Electron parametric instabilities of ultra-intense short laser pulses propagating in plasmas. Phys. Rev. Lett. 78: 2132-2135.ADSCrossRefGoogle Scholar
  108. 108.
    Quesnel B., P. Mora, J.-C. Adam et al. 1997b. Electron parametric instabilities of ultra-intense laser pulses propagating in plasma of arbitrary density. Phys. Plasmas 4: 3358-3368.ADSCrossRefGoogle Scholar
  109. 109.
    Riconda C., S. Hüller, J. Myatt et al. 2000. Kinetic Effects on the Ion Sound Waves Generated by Stimulated Brillouin Scattering of a Spatially Smoothed Laser beam. Phys. Scr. 84: 217-220.CrossRefGoogle Scholar
  110. 110.
    Riconda C., A. Heron, D. Pesme et al. 2005a. Electron Kinetic Effects in the Nonlinear evolution of a Driven Ion-Acoustic Wave. Phys. Rev. Lett. 94: 055003-055006.ADSCrossRefGoogle Scholar
  111. 111.
    Riconda C., A. Heron, D. Pesme et al. 2005b. Electron and ion kinetic effects in the saturation of a driven ion-acoustic Wave. Phys. Plasmas 12: 112308-13ADSCrossRefGoogle Scholar
  112. 112.
    Riconda C., S. Weber, L. Lancia et al. 2013. Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas 20: 083115.ADSCrossRefGoogle Scholar
  113. 113.
    Rose H.A. and D.F. DuBois. 1993. Statistical properties of laser hot spots produced by a random phase plate. Phys. Fluids B 5: 590-596.ADSCrossRefGoogle Scholar
  114. 114.
    Rosenbluth M.N. 1972. Parametric Instabilities in Inhomogeneous Media. Phys. Rev. Lett. 29: 565-568.ADSCrossRefGoogle Scholar
  115. 115.
    Rousse A., P. Audebert, J.-P. Geindre et al. 1994. Efficient Kα x-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50: 2200.ADSCrossRefGoogle Scholar
  116. 116.
    Rousseaux C., M.R. Le Gloahec, S.D. Baton et al. 2002. Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas. Phys. Plasmas 9: 4261-4269.ADSCrossRefGoogle Scholar
  117. 117.
    Rudakov L.I. and R.Z. Sagdeev. 1961. On the instability of a nonuniform plasma in a strong magnetic field. Soviet Phys. Doklady 6: 415.ADSMathSciNetGoogle Scholar
  118. 118.
    Sagdeev R.Z. and A.A. Galeev. 1969. Nonlinear Plasma Theory. Benjamin, New York.Google Scholar
  119. 119.
    Sanbonmatsu K.Y., H.X. Vu, D.F. DuBois et al. 1999. New Paradigm for the Self-Consistent Modeling of Wave-Particle and Wave-Wave Interactions in the Saturation of Electromagnetically Driven Parametric Instabilities. Phys. Rev. Lett. 82: 932-935.ADSCrossRefGoogle Scholar
  120. 120.
    Shapiro V.D. and R.Z. Sagdeev. 1997. Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Report 283: 49-71.ADSCrossRefGoogle Scholar
  121. 121.
    Suckewer S. and P. Jaegle. 2009. X-Ray laser: past, present, and future. Laser Phys. Lett. 6: 411-436.CrossRefGoogle Scholar
  122. 122.
    Tabak M., D.S. Clark, S.P. Hatchett et al. 2005. Review of progress in Fast Ignition. Phys. Plasmas 12: 057305.ADSCrossRefGoogle Scholar
  123. 123.
    Theilhaber K., G. Laval and D. Pesme. 1987. Numerical Simulations of turbulent trapping in the weak beam-plasma instability. Phys. Fluids 30: 3129-3149.ADSCrossRefGoogle Scholar
  124. 124.
    Tikhonchuk V.T. Ph. Mounaix and D. Pesme. 1997. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma. Phys. Plasmas 4: 2658-2669.ADSCrossRefGoogle Scholar
  125. 125.
    Tsunoda S.I., F. Doveil and J.H. Malmberg. 1987. Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves. Phys. Rev. Lett. 58: 1112-1115.ADSCrossRefGoogle Scholar
  126. 126.
    Tsunoda S.I., F. Doveil and J.H. Malmberg. 1991. Experimental test of quasilinear theory. Phys. Fluids B 3: 2747-2757.ADSCrossRefGoogle Scholar
  127. 127.
    Tsytovich V.N. 1967. Non-linear effects in a plasma. Physics-Uspekhi 9: 805-836.CrossRefGoogle Scholar
  128. 128.
    Turnbull D., S. Li, A. Morozov et al. 2012. Possible origins of a time-resolved frequency shift in Raman plasma amplifiers. Phys. Plasmas 19: 073103.ADSCrossRefGoogle Scholar
  129. 129.
    Vedenov A.A., E.P. Velikhov and R.Z. Sagdeev. 1962. Quasilinear theory of plasma oscillations. Nucl. Fusion Suppl. 2: 465–75MATHGoogle Scholar
  130. 130.
    Villani C. 2010. Landau damping. Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010.Google Scholar
  131. 131.
    Villani C. 2012. Le théorème vivant. Grasset edit.Google Scholar
  132. 132.
    Weber S., C. Riconda, L. Lancia et al. 2013. Amplification of Ultrashort Laser Pulses by Brillouin Backscattering in Plasmas. Phys. Rev. Lett. 111: 055004-055007.ADSCrossRefGoogle Scholar
  133. 133.
    Wersinger J.-M., J.M. Finn and E. Ott. 1979. Bifurcations and strange behavior in coupled three waves system. Intrinsic Stochasticity in Plasmas, Les Editions de Physique, Orsay (France), p. 403.Google Scholar
  134. 134.
    Wersinger J.-M., J.M. Finn and E. Ott. 1980. Bifurcations and strange behavior in instability saturation by nonlinear mode coupling. Phys. Rev. Lett. 44: 453-456.ADSMathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    White R., P. Kaw and D. Pesme. 1974. Absolute parametric instabilities in inhomogeneous plasmas. Nucl. Fusion 14: 45-51.CrossRefGoogle Scholar
  136. 136.
    Wilks S.C., W.L. Kruer, M. Tabak et al. 1992. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69: 1383-1386.ADSCrossRefGoogle Scholar
  137. 137.
    Williams E.A., B.I. Cohen, L. Divol et al. 2004. Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering. Phys. Plasmas 11: 231-244.ADSCrossRefGoogle Scholar
  138. 138.
    Young P., E.A. Williams and K.G. Estabrook. 1994. Observations of Transition to Strongly Coupled Stimulated Brillouin Scattering in Laser-Plasma Interactions. Phys. Rev. Lett. 73: 2051-2054.ADSCrossRefGoogle Scholar
  139. 139.
    Zakharov V.E. 1972. Collapse of Langmuir Waves. Soviet J. Exper. Phys. 35: 908.ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre de Physique Théorique, Ecole polytechnique, CNRS, Université Paris-SaclayPalaiseauFrance

Personalised recommendations