The European Physical Journal H

, Volume 41, Issue 4–5, pp 365–394 | Cite as

The source of solar energy, ca. 1840–1910: From meteoric hypothesis to radioactive speculations

Article

Abstract

Why does the Sun shine? Today we know the answer to the question and we also know that earlier answers were quite wrong. The problem of the source of solar energy became an important part of physics and astronomy only with the emergence of the law of energy conservation in the 1840s. The first theory of solar heat based on the new law, due to J.R. Mayer, assumed the heat to be the result of meteors or asteroids falling into the Sun. A different and more successful version of gravitation-to-heat energy conversion was proposed by H. Helmholtz in 1854 and further developed by W. Thomson. For more than forty years the once so celebrated Helmholtz-Thomson contraction theory was accepted as the standard theory of solar heat despite its prediction of an age of the Sun of only 20 million years. In between the gradual demise of this theory and the radically different one based on nuclear processes there was a period in which radioactivity was considered a possible alternative to gravitational contraction. The essay discusses various pre-nuclear ideas of solar energy production, including the broader relevance of the question as it was conceived in the Victorian era.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbot, C.G. 1911a. The solar constant of radiation, Proc. Amer. Phil. Soc. 50: 235-245.Google Scholar
  2. 2.
    Abbot, C.G. 1911b. The Sun, Appleton and Co., New York.Google Scholar
  3. 3.
    Adams, W.S. and A. Kohlschütter 1912. Observations of the spectrum of Nova Geminorum no. 2, Astrophys. J. 36: 293-321.ADSCrossRefGoogle Scholar
  4. 4.
    Armstrong, W.G. 1864. [Presidential address], Report, Brit. Assoc. Adv. Sci. 34: li-lxiv.Google Scholar
  5. 5.
    Auwers, A. 1873. On the alleged variability of the Sun’s diameter, Month. Not. Roy. Astron. Soc. 34: 22-24.ADSCrossRefGoogle Scholar
  6. 6.
    Ball, R.S. 1893. The Story of the Sun, Cassell and Company, London.Google Scholar
  7. 7.
    Barr, E.S. 1963. The infrared pioneers, III: Samuel Pierpont Langley, Infrared Phys. 3: 195-206.ADSCrossRefGoogle Scholar
  8. 8.
    Becker, G.F. 1898. Kant as a natural philosopher, Amer. J. Sci. 5: 97-112.CrossRefGoogle Scholar
  9. 9.
    Brayley, E.W. 1865. Inferences and suggestions in cosmical and geological philosophy, Proc. Roy. Soc. 14: 120-129.CrossRefGoogle Scholar
  10. 10.
    Brush, S.G. 1987. The nebular hypothesis and the evolutionary worldview, Hist. Sci. 25: 245-278.CrossRefGoogle Scholar
  11. 11.
    Brush, S.G. 1996. A History of Modern Planetary Physics, Vols. 1-3, Cambridge University Press, Cambridge.Google Scholar
  12. 12.
    Burchfield, J.D. 1975. Lord Kelvin and the Age of the Earth, University of Chicago Press, Chicago.Google Scholar
  13. 13.
    Caneva, K.L. 1993. Robert Mayer and the Conservation of Energy, Princeton University Press, Princeton.Google Scholar
  14. 14.
    Cantor, G. 1983. Optics after Newton: Theories of Light in Britain and Ireland, 1704–1840, Manchester University Press, Manchester.Google Scholar
  15. 15.
    Chamberlin, T.C. 1899. Lord Kelvin’s address on the age of the Earth as an abode fitted for life, Science 9: 889-901, 10: 11-18.ADSCrossRefGoogle Scholar
  16. 16.
    Clausius, R. 1864. Ueber die Concentration von Wärme- und Lichtstrahlen und die Gränzen ihrer Wirkung, Ann. Physik und Chemie 121: 1-44.ADSCrossRefGoogle Scholar
  17. 17.
    Clerke, M.A. 1893. A Popular History of Astronomy during the Nineteenth Century, Adam & Charles Black, Edinburgh.Google Scholar
  18. 18.
    Croll, J. 1878. Age of the Sun in relation to evolution, Nature 10: 206-207, 321, 464-465.ADSCrossRefGoogle Scholar
  19. 19.
    Croll, J. 1889. Stellar Evolution and Its Relation to Geological Time, Edward Stanford, London.Google Scholar
  20. 20.
    Darwin, G.H. 1903. Radio-activity and the age of the Sun, Nature 68: 496.ADSCrossRefGoogle Scholar
  21. 21.
    Darwin, G.H. 1905. [Presidential address], Report, Brit. Assoc. Adv. Sci. 75: 3-32.Google Scholar
  22. 22.
    Daub, E.E. 1970. Maxwell’s demon, Stud. Hist. Phil. Sci. 1: 213-227.CrossRefMATHGoogle Scholar
  23. 23.
    Eddington, A.S. 1917. Further notes on the radiative equilibrium of the stars, Month. Not. Royal Astron. Soc. 77: 596-612.ADSCrossRefMATHGoogle Scholar
  24. 24.
    Eddington, A.S. 1920. The internal constitution of the stars, Nature 106: 14-20.ADSCrossRefGoogle Scholar
  25. 25.
    Elkana, Y. 1974. The Discovery of the Conservation of Energy, Harvard University Press, Cambridge, MA.Google Scholar
  26. 26.
    Feulner, G. 2012. The faint young Sun problem, Rev. Geophys. 50: RG2006.ADSCrossRefGoogle Scholar
  27. 27.
    Giebeler, H. 1912. Spektroskopischer Beobachtungen der Nova Geminorum 2 am Bonner Refraktor, Astron. Nachr. 191: 393-402.ADSCrossRefGoogle Scholar
  28. 28.
    Gold, B.J. 2010. Thermopoetics: Energy in Victorian Literature and Science, MIT Press, Cambridge, MA.Google Scholar
  29. 29.
    Helmholtz, H. 1995. Science and Culture: Popular and Philosophical Essays, ed. D. Cahan, University of Chicago Press, Chicago.Google Scholar
  30. 30.
    Herschel, J. 1833. Treatise on Astronomy, Green & Longman, London.Google Scholar
  31. 31.
    Hufbauer, K. 1981. Astronomers take up the stellar-energy problem, Hist. Stud. Phys. Sci. 11: 277-303.Google Scholar
  32. 32.
    Hufbauer, K. 2006. Stellar structure and evolution, 1924–1939, J. Hist. Astron. 37: 203-227.ADSCrossRefGoogle Scholar
  33. 33.
    Irwin, P.G.J. 2009. Giant Planets of Our Solar System, Springer, Berlin.Google Scholar
  34. 34.
    James, F.A.J.L. 1982. Thermodynamics and sources of solar heat, 1846–1862, Brit. J. Hist. Sci. 15: 155-181.ADSCrossRefGoogle Scholar
  35. 35.
    James, F.A.J.L. 1985. Between two scientific generations: John Herschel’s rejection of the principle of the conservation of energy in his 1864 correspondence with William Thomson, Notes Records Roy. Soc. London 40: 53-62.CrossRefGoogle Scholar
  36. 36.
    Joly, J. 1903. Radium and the Sun’s heat, Nature 68: 572.ADSCrossRefGoogle Scholar
  37. 37.
    Jones, H.C. 1903. A New Era in Chemistry, Van Nostrand, New York.Google Scholar
  38. 38.
    Kant, I. 1981. Universal Natural History and Theory of the Heavens, ed. S. Jaki, Scottish Academic Press, Edinburgh.Google Scholar
  39. 39.
    Kant, I. 2015. Natural Science, ed. E. Watkins, Cambridge University Press, Cambridge.Google Scholar
  40. 40.
    Kayser, H. 1912. Ein Versuch zur Erklärung der neuen Sterne durch Radioaktive Prozesse, Astron. Nachr. 191: 421-426.ADSCrossRefGoogle Scholar
  41. 41.
    Kidwell, P.A. 1981. Prelude to solar energy: Pouillet, Herschel, Forbes and the solar constant, Ann. Sci. 38, 457-476.CrossRefGoogle Scholar
  42. 42.
    Kragh, H. 2007. Cosmic radioactivity and the age of the universe, 1900–1930, J. Hist. Astron. 38: 393-412.ADSCrossRefGoogle Scholar
  43. 43.
    Kragh, H. 2008. Entropic Creation: Religious Contexts of Thermodynamics and Cosmology, Ashgate, Aldershot.Google Scholar
  44. 44.
    Kragh, H. 2012. Is space flat? Nineteenth-century astronomy and non-Euclidean geometry, J. Astron. Hist. Heritage 15: 149-158.ADSGoogle Scholar
  45. 45.
    Kuhn, T.S. 1969. Energy conservation as an example of simultaneous discovery, pp. 321–356 in Critical Problems in the History of Science, ed. M. Clagett, University of Wisconsin Press, Madison.Google Scholar
  46. 46.
    Lane, J.H. 1870. On the theoretical temperature of the Sun, Amer. J. Sci. 50: 57-84.CrossRefGoogle Scholar
  47. 47.
    Lankester, E.R. 1906. [Presidential address], Nature 74: 321-333.CrossRefGoogle Scholar
  48. 48.
    Lindsay, R.B. 1973. Julius Robert Mayer: Prophet of Energy, Pergamon Press, Oxford.Google Scholar
  49. 49.
    Mayer, J.R. 1893. Kleinere Schriften und Briefe, ed. J.J. Weyrauch, Cotta’schen Buchhandlung, Stuttgart.Google Scholar
  50. 50.
    Mitchell, S.A. 1912. Radium and the chromosphere, Astron. Nachr. 192: 266-270.ADSCrossRefGoogle Scholar
  51. 51.
    Mitchell, S.A. 1913. Is radium in the Sun? Pop. Astron. 21: 321-331.ADSGoogle Scholar
  52. 52.
    Moulton, F.R. 1914. An Introduction to Celestial Mechanics, Macmillan, New York.Google Scholar
  53. 53.
    Mousoutzanis, A. 2014. Fin-de-Siécle Fictions, 1890s-1990s: Apocalypse, Technoscience, Empire, Palgrave, London.Google Scholar
  54. 54.
    Newcomb, S. 1878. Popular Astronomy, Macmillan & Co, London.Google Scholar
  55. 55.
    Perry, J. 1895. On the age of the Earth, Nature 51: 224-227.CrossRefMATHGoogle Scholar
  56. 56.
    Poincaré, H. 1911. Leçons sur les Hypothèses Cosmogoniques, A. Hermann, Paris.Google Scholar
  57. 57.
    Pouillet, C.S. 1838. Mémoire sur la chaleur solaire, sur les pouvoirs rayonnants et absorbants de l’air atmosphérique, et sur la température de l’espace, Comptes Rendus 7: 24-65.Google Scholar
  58. 58.
    Powell, C.S. 1988. J. Homer Lane and the internal structure of the Sun, J. Hist. Astron. 19: 183-199.ADSCrossRefGoogle Scholar
  59. 59.
    Rankine, W.M. 1881. Miscellaneous Scientific Papers, Griffin and Co., London.Google Scholar
  60. 60.
    Ritter, A. 1898. On the constitution of gaseous celestial bodies, Astrophys. J. 8: 293-315.ADSCrossRefGoogle Scholar
  61. 61.
    Robitaille, P.-M. 2011. A thermodynamic history of the solar constitution, Progress Phys. 3: 3-25, 41-59.Google Scholar
  62. 62.
    Rutherford, E. 1906. Radioactive Transformations, Cambridge University Press, Cambridge.Google Scholar
  63. 63.
    Rutherford, E. 1962. The Collected Papers of Lord Rutherford of Nelson, ed. J. Chadwick, Vol. 1, Allen and Unwin, London.Google Scholar
  64. 64.
    Schaffer, S. 1995. Where experiments end: Tabletop trials in Victorian astronomy, pp. 257–299 in Scientific Practice: Theories and Stories of Doing Physics, ed. J.Z. Buchwald, University of Chicago Press, Chicago.Google Scholar
  65. 65.
    Shahiv, G. 2009. The Life of Stars: The Controversial Inception and Emergence of the Theory of Stellar Structure, Springer, Heidelberg.Google Scholar
  66. 66.
    Siemens, W. 1882. On the conservation of solar energy, Proc. Roy. Soc. 33: 389-398.CrossRefGoogle Scholar
  67. 67.
    Siemens, W. 1883. On the Conservation of Solar Energy, Macmillan, London.Google Scholar
  68. 68.
    Smith, C. and M. Norton Wise 1989. Energy and Empire: A Biographical Study of Lord Kelvin, Cambridge University Press, Cambridge.Google Scholar
  69. 69.
    Smith, C. 1998. The Science of Energy: A Cultural History of Energy Physics in Victorian Britain, University of Chicago Press, Chicago.Google Scholar
  70. 70.
    Soddy, F. 1909. The Interpretation of Radium, John Murray, London.Google Scholar
  71. 71.
    Soddy, F. 1975. Radioactivity and Atomic Theory, ed. T.J. Trenn, Taylor & Francis, London.Google Scholar
  72. 72.
    Spencer, H. 1867. First Principles, Williams and Norgate, London.Google Scholar
  73. 73.
    Stark, J. 1903. [No title], Nature 68: 230.CrossRefGoogle Scholar
  74. 74.
    Stewart, B. 1870. What is energy? Nature 2: 270-271.ADSCrossRefGoogle Scholar
  75. 75.
    Stinner, A. 2002. Calculating the age of the Earth and the Sun, Phys. Educ. 37: 296-305.ADSCrossRefGoogle Scholar
  76. 76.
    Tait, P.G. 1876. Lectures on Some Recent Advances in Physical Science, Macmillan, London.Google Scholar
  77. 77.
    Tassoul, J.-L. and M. Tassoul 2004. A Concise History of Solar and Stellar Physics, Princeton University Press, Princeton.Google Scholar
  78. 78.
    Thomson, W. 1882. Mathematical and Physical Papers, Vol. 1, Macmillan, London.Google Scholar
  79. 79.
    Thomson, W. 1884. Mathematical and Physical Papers, Vol. 2, Macmillan, London.Google Scholar
  80. 80.
    Thomson, W. 1891. Popular Lectures and Addresses, Vol. 1, Macmillan, London.Google Scholar
  81. 81.
    Tort, A.C. and F. Nogarol 2011. Another look at Helmholtz’s model for the gravitational contraction of the Sun, Europ. J. Phys. 32: 1679-1685.CrossRefMATHGoogle Scholar
  82. 82.
    Vogel, H.C., ed. 1892. Newcomb-Engelmann’s Populäre Astronomie, W. Engelmann, Leipzig.Google Scholar
  83. 83.
    Waterston, J.J. 1860. On the inductions with respect to the heat engendered by the possible fall of a meteor into the Sun, Month. Not. Roy. Astron. Soc. 20: 197-202.ADSCrossRefGoogle Scholar
  84. 84.
    Waterston, J.J. 1892. On the physics of media that are composed of free and perfectly elastic molecules in a state of motion, Phil. Trans. Roy. Soc. A 183: 1-79.ADSCrossRefMATHGoogle Scholar
  85. 85.
    Wesemael, F. 2009. Harkins, Perrin and the alternative paths to the solution of the stellar-energy problem, 1915–1923. J. Hist. Astron. 40: 277-296.ADSCrossRefGoogle Scholar
  86. 86.
    Williams, W.M. 1870. The Fuel of the Sun, Simpkin, Marshall & Co., London.Google Scholar
  87. 87.
    Winnek, H.C. 1970. Science and morality in Thomas C. Chamberlin, J. Hist. Ideas 31: 441-456.CrossRefGoogle Scholar
  88. 88.
    Young, C.A. 1896. The Sun, Appleton and Company, New York.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Niels Bohr Institute, University of CopenhagenCopenhagenDenmark

Personalised recommendations