The European Physical Journal H

, Volume 41, Issue 4–5, pp 267–302 | Cite as

Birth and initial developments of experiments with resonant detectors searching for gravitational waves

Article

Abstract

A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, B.P. et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116: 061102.ADSCrossRefGoogle Scholar
  2. 2.
    Aglietta, M. et al. 1989. Analysis of the Data Recorded by the Mont Blanc Neutrino Detector and by the Maryland and Rome Gravitational-Wave Detectors during SN1987A. Nuovo Cimento C 12: 75–103.ADSCrossRefGoogle Scholar
  3. 3.
    Aglietta, M. et al. 1991a. Coincidences among the Data Recorded by the Baksan, Kamioka and Mont Blanc Underground Neutrino Detectors, and by the Maryland and the Rome Gravitational-Wave Detectors during Supernova 1987A. Nuovo Cimento C 14: 171–193.ADSCrossRefGoogle Scholar
  4. 4.
    Aglietta, M. et al. 1991b. Correlation between the Maryland and Rome Gravitational-Wave Detectors and the Mont Blanc, Kamioka and IMB Particle Detectors During SN1987A. Nuovo Cimento B 106: 1257–1269.ADSCrossRefGoogle Scholar
  5. 5.
    Allega, A.M. and N. Cabibbo. 1983. Acoustic detection of superheavy monopoles in gravitational antennas. Lett. Nuovo Cimento 38: 263.ADSCrossRefGoogle Scholar
  6. 6.
    Allen, W.D. and C. Christodoulides. 1975. Gravitational radiation experiments at the University of Reading and the Rutherford Laboratory. J. Phys. A: Math. Gen. 8: 11.CrossRefGoogle Scholar
  7. 7.
    Amaldi, E. and G. Pizzella. 1979. Relativitiy, Quanta, and Cosmology in the development of the scientific thought of Albert Einstein. Johnson Reprint Corp., Academic Press.Google Scholar
  8. 8.
    Amaldi, E. and G. Pizzella. 1986. Estimate of the background of a gravitational-wave detector due to cosmic rays. Il Nuovo Cimento 9: 612–620.ADSCrossRefGoogle Scholar
  9. 9.
    Amaldi, E. et al. 1976. Gravitazione Sperimentale. Accademia Nazionale dei Lince, Pavia.Google Scholar
  10. 10.
    Amaldi, E. and others. 1977. Measurement at 4.2 K of the Brownian Noise in a 20 kg Gravitational Wave Antenna and Upper Limit for Gravitational Radiation at 8580 Hz. Lett. Nuovo Cimento 18: 425–432.ADSCrossRefGoogle Scholar
  11. 11.
    Amaldi, E. and others. 1978. Initial Operation of the m = 390 kg Cryogenic Gravitation Wave Antenna. Nuovo Cimento C1 18: 497–509.CrossRefGoogle Scholar
  12. 12.
    Amaldi, E. and others. 1980. The 390 kg prototype of cryogenic resonant gravitational wave antenna. Lett. Nuovo Cimento 18: 362.ADSCrossRefGoogle Scholar
  13. 13.
    Amaldi, E. et al. 1986. Preliminary Results on the Operation of a 2270 kg Cryogenic Gravitational Wave Antenna With a Resonant Capacitive Transducer and a DC Squid Amplifier. Il Nuovo Cimento C 9: 829–845.ADSCrossRefGoogle Scholar
  14. 14.
    Amaldi, E. et al. 1987a. Data recorded by the Rome room temperature gravitational wave antenna during SN1987A. LA THUILE 1987, Results and Perspectives in Particle Physics.Google Scholar
  15. 15.
    Amaldi, E. et al. 1987b. Data recorded by the Rome Room Temperature GW Antenna, during the SN1987A in the large Magellanic Cloud. Editions Frontieres, M. Greco.Google Scholar
  16. 16.
    Amaldi, E. et al. 1989. First GWs coincidence experiment between resonant gravitational wave detectors – Louisiana- Rome- Stanford. Astronomy and Astrophysics 216: 325–332.ADSGoogle Scholar
  17. 17.
    Aplin, P.S. 1972. An improved detector of gravitational radiation. Gen. Rel. Grav. 3: 111–113.ADSCrossRefGoogle Scholar
  18. 18.
    Ashby, N. et al. 1990. General Relativity and Gravitation. Cambridge University Press, Cambridge.Google Scholar
  19. 19.
    Astone, P. and G. Pizzella. 2002. On upper limits for gravitational radiation. Astroparticle Phys. 16: 441–450.ADSCrossRefGoogle Scholar
  20. 20.
    Astone, P. et al. 1991. Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna. Zeit. Script C – Particles and Fields 50: 21–29.CrossRefGoogle Scholar
  21. 21.
    Astone, P. et al. 1996. Upper limit for a gravitational-wave stochastic background with the EXPLORER and NAUTILUS resonant detectors. Phys. Lett. B 385: 421–424.ADSCrossRefGoogle Scholar
  22. 22.
    Astone, P. et al. 2000. Cosmic rays observed by the resonant gravitational wave detector NAUTILUS. Phys. Rev. Lett. 84: 14–17.ADSCrossRefGoogle Scholar
  23. 23.
    Astone, P. et al. 2001. Search for periodic gravitational wave sources with the Explorer detector. Phys. Rev. D 65: 022001.ADSCrossRefGoogle Scholar
  24. 24.
    Astone, P. et al. 2002a. The EXPLORER gravitational wave antenna: Recent improvements and performances. Class. Quant. Grav. 19: 1905–1910.ADSCrossRefGoogle Scholar
  25. 25.
    Astone, P. et al. 2002b. The next science run of the gravitational wave detector NAUTILUS. Class. Quantum Grav 218: 1911–1917.ADSCrossRefGoogle Scholar
  26. 26.
    Astone, P. et al. 2005. Cumulative analysis of the association between the gravitational wave detectors NAUTILUS and EXPLORER and the gamma-ray bursts detected by BATSE and BeppoSAX. Phys. Rev. D 71: 042001.ADSCrossRefGoogle Scholar
  27. 27.
    Astone, P. et al. 2006. Result of a preliminary data analysis in coincidence between the LSU and Rome gravitational wave antennas. Proc. 10GR, World Scientific, Singapore, 1992.Google Scholar
  28. 28.
    Astone, P. et al. 2008. Detection of high energy cosmic rays with the resonant gravitational wave detector NAUTILUS and EXPLORER. Astroparticle Phys. 30: 200–208.ADSCrossRefGoogle Scholar
  29. 29.
    Astone, P. et al. 2010. A 17-month search for gravitational wave bursts in 2005–2007. Phys. Rev. D 82: 022003.ADSCrossRefGoogle Scholar
  30. 30.
    Astone, P. et al. 2013. Analysis of 3 y of data from the gravitational wave detectors EXPLORER and NAUTILUS. Phys. Rev. D 87: 082002.ADSCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Baggio, L. et al. 2005. 3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors. Phys. Rev. Lett. 94: 241101.ADSCrossRefGoogle Scholar
  33. 33.
    Bassan, M. et al. 2016. Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites. Astroparticle Phys. 78: 52–64.ADSCrossRefGoogle Scholar
  34. 34.
    Bernard, C. et al. 1984. Sonic search for monopoles, gravitational waves and newtorites. Nucl. Phys. B 242: 93–144.ADSCrossRefGoogle Scholar
  35. 35.
    Beron, B.L. and R. Hofstander. 1969. Generation of Mechanical Vibrations by Penetreting Particles. Phys. Rev. Lett. 23: 184.ADSCrossRefGoogle Scholar
  36. 36.
    Beron, B.L. et al. 1970. Mechanical Oscillations Induced by Penetrating Particles. IEEE Trans. Nucl. Sci. 17: 65–66.ADSCrossRefGoogle Scholar
  37. 37.
    Billing, H. and W. Winkler. 1976. The Munich Gravitational-Wave Detector. Nuovo Cimento B 33: 665–680.ADSCrossRefGoogle Scholar
  38. 38.
    Blair, D.G. 1991. The Detection of Gravitational Waves. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  39. 39.
    Blair, D.G. et al. 1995. Operation of the Perth cryogenic resonant-bar gravitational wave detector. World Scientific, Singapore.Google Scholar
  40. 40.
    Bonazzola, S. et al. 1973. Meudon Gravitational Radiation Detection Experiment. Colloques Internationaux du Centre National de la Recherche Scientifique 220: 101–111.Google Scholar
  41. 41.
    Bonifazi, P. et al. 1978. Data Analysis Algorithms for Gravitational Wave Experiments. Nuovo Cimento C1 4: 465–487.ADSCrossRefGoogle Scholar
  42. 42.
    Bonifazi, P. et al. 1996. Test of a back-action evading scheme on a cryogenic gravitational wave antenna. Phys. Lett. A 215: 109–217.ADSCrossRefGoogle Scholar
  43. 43.
    Boughn, S.P. and others. 1977. Observation of Mechanical Nyquist Noise in a Cryogenic Gravitational-Wave Antenna. Phys. Rev. Lett. 38: 454–457.ADSCrossRefGoogle Scholar
  44. 44.
    Boughn, S.P. and others. 1982. Observations with a Low-Temperature, Resonant Mass, Gravitational Radiation Detector. Astrophys. J. 261, L19–L22.ADSCrossRefGoogle Scholar
  45. 45.
    Braginskii, V.B. and Y.I. Vorontsov. 1975. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Soviet Physics Uspekhi 17.Google Scholar
  46. 46.
    Braginsky, V.B. et al. 1974. An upper limit on the density of gravitational radiation of extraterrestrial origin. Sov. Phys. JETP 39: 387–392.ADSGoogle Scholar
  47. 47.
    Bronzini, F. et al. 1985. An experimental apparatus for studying the background of gravitational wave antennas. Nuovo Cimento C 8: 300–319.ADSCrossRefGoogle Scholar
  48. 48.
    Brustein, R. and others. 1995. Relic Gravitational Waves from String Cosmology. Phys. Rev. Lett. B 361: 45–51.ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Carelli, P. et al. 1975. Preliminary Results on the Operation of a 2270 kg Cryogenic Gravitational Wave Antenna With a Resonant Capacitive Transducer and a DC Squid Amplifier. Cryogenics, 406–408.Google Scholar
  50. 50.
    Caves, C.M. et al. 1980. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. Rev. Mod. Phys. 52, 341.ADSCrossRefGoogle Scholar
  51. 51.
    Collins, H. 2004. Gravity’s Shadow: The Search for Gravitational Waves. University of Chicago Press.Google Scholar
  52. 52.
    De Rujula, A. and S.L. Glashow. 1984. Nuclearites:a novel form of cosmic radiation. Nature 312: 734–737.ADSCrossRefGoogle Scholar
  53. 53.
    Douglas, D.H. et al. 1975. Two-Detector-Coincidence Search for Burst of Gravitational Radiation. Phys. Rev. Lett. 35: 480–483.ADSCrossRefGoogle Scholar
  54. 54.
    Drever, R.W.P. et al. 1973. Search for Short Bursts of Gravitational Radiation. Nature 246: 340–344.ADSCrossRefGoogle Scholar
  55. 55.
    Enke, H. et al. 1986. A recent coincidence experiment of gravitational waves with long baseline. Chinese Phys. Lett. 3: 529–532.CrossRefGoogle Scholar
  56. 56.
  57. 57.
    Ferrari, V. and others. 1982. Search For Correlations Between The University Of Maryland And The University Of Rome Gravitational Radiation Antennas. Phys. Rev. D 25: 2471–2486.ADSCrossRefGoogle Scholar
  58. 58.
    Forward, L. 1978. Wide Band Laser Interferometer Gravitational Radiation Experiment. Phys. Rev. D 17: 379–390.ADSCrossRefGoogle Scholar
  59. 59.
    Fuligni, F. and V. Iafolla. 1983. Results of measurements on a harmonic oscillator using a back-action-evading scheme. Third Marcel Grossmann Meeting B: 1451–1453.Google Scholar
  60. 60.
    Galeotti P. and G. Pizzella. 2016. New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, add the proper reference Eur. Phys. J. C 76: 426.ADSCrossRefGoogle Scholar
  61. 61.
    Geng, Z.K. et al. 1995. Operation of the ALLEGRO Detector at LSU. World Scientific, Singapore.Google Scholar
  62. 62.
    Gibbons, G.W. and S.W. Hawking. 1971. Theory of the detection of short bursts of gravitational radiation. Phys. Rev. D 4: 2191–2197.ADSCrossRefGoogle Scholar
  63. 63.
    Grassi Strini, A. and others. 1980. Excitation of resonant oscillations in a solid bar by 30 MeV protons. J. Appl. Phys. 51: 948.ADSCrossRefGoogle Scholar
  64. 64.
    Heng, I.S. et al. 1996. Long term operation of a niobium resonant bar gravitational wave antenna. Phys. Lett. A 218: 190–196.ADSCrossRefGoogle Scholar
  65. 65.
    Hirakawa, H. and K. Narihara. 1975. Search for Gravitational Radiation at 145 Hz. Phys. Rev. Lett. 35: 330–334.ADSCrossRefGoogle Scholar
  66. 66.
    Hirakawa, H. et al. 1978. Search for gravitational radiation from the Crab pulsar. Phys. Rev. D 17: 1919–1923.ADSCrossRefGoogle Scholar
  67. 67.
    Hulse, R.A. and J.H. Taylor. 1975. Discovery of a pulsar in a binary system. Astrophys. J 195, L51–L53.ADSCrossRefGoogle Scholar
  68. 68.
    Kennefick, D. 1997. Controversies in the history of the radiation reaction problem in general relativity. e-Print: gr-qc/9704002: 33.Google Scholar
  69. 69.
    Lee, N. et al. 1976. Gravitational-radiation-detector observations in 1973 and 1974. Phys. Rev. D 14: 893–906.ADSCrossRefGoogle Scholar
  70. 70.
    Levine, J.L. and B.L. Garwin. 1974. New Negative Result for Gravitational Wave Detection, and Comparison with Reported Detection. Phys. Rev. Lett. 33: 794–797.ADSCrossRefGoogle Scholar
  71. 71.
    Liu, G. and B. Barish. 1988. Nuclearite flux limit from gravitational-wave detectors. Phys. Rev. Lett. 61: 271–274.ADSCrossRefGoogle Scholar
  72. 72.
    Loinger, A. and T. Marsico. 2016. A detailed computation of LIGO’s statements on the 150914-signal. https://www.researchgate.net/ 301542915.
  73. 73.
    Maeder, D.G. 1972. On a mechanical matching condition related to the detection limit for gravitational radiation. J. Phys. A. 5.Google Scholar
  74. 74.
    Mauceli, E. 1997. Data analysis of the ALLEGRO GW detector. Ph.D. Thesis (Louisiana State University).Google Scholar
  75. 75.
    Mauceli, E. et al. 1996. The Allegro gravitational wave detector: Data acquisition and analysis. Phys. Rev. D 54: 1264–1275.ADSCrossRefGoogle Scholar
  76. 76.
    McHugh, M. et al. 2000. The ALLEGRO gravitational wave detectort. Int. J. Mod. Phys. D 9: 229.ADSCrossRefGoogle Scholar
  77. 77.
    McHugh, M. et al. 2005. Calibration of the ALLEGRO resonant detector. Classical and Quantum Gravity 22: 174–181.CrossRefGoogle Scholar
  78. 78.
    Modena, I. and G. Pizzella. 2006. Coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 1998, during the activities of the black hole candidate XTE J1550-564 and the magnetar SGR1900+14. Int. J. Mod. Phys. D 15: 485–491.ADSCrossRefMATHGoogle Scholar
  79. 79.
    Modestino, G. and G. Pizzella. 2011. SGR 1806-20 and the gravitational wave detectors EXPLORER and NAUTILUS. Phys. Rev. D 83: 062004.ADSCrossRefGoogle Scholar
  80. 80.
    Moss, G.E. et al. 1971. Photon-Noise-Limited Laser Transducer for Gravitational Antenna. Applied Optics 10: 2495–2498.ADSCrossRefGoogle Scholar
  81. 81.
    Nagashima, Y. et al. 1988. Composite antennas for low-frequency gravitational radiation. Rev. Sci. Instrum. 59: 112–114.ADSCrossRefGoogle Scholar
  82. 82.
  83. 83.
    Olde, K. et al. 1979. Search for gravitational radiation from the Crab pulsar. Phys. Rev. D 20: 2480–2483.ADSCrossRefGoogle Scholar
  84. 84.
    Owa, S. et al. 1986. Cryogenic detector for gravitational radiation from the Crab pulsar. MGM4, Elsevier Science Publishers B.V.Google Scholar
  85. 85.
    Pallottino, G.V. and G. Pizzella. 1981. Matching of Transducers to Resonant Gravitational Wave Antennas. Nuovo Cimento C4 4: 237–283.ADSCrossRefGoogle Scholar
  86. 86.
    Papoulis, A. 1965. Probability, Random variables and stochastic process. McGrow-Hill Book Co., New York.Google Scholar
  87. 87.
    Pizzella, G. 1975. Gravitational-Radiation Experiments. Rivista del Nuovo Cimento 5: 369–397.ADSCrossRefGoogle Scholar
  88. 88.
    Pizzella, G. 1984. The Search for Gravitational Waves. Phys. Bull. 35: 4–8.CrossRefGoogle Scholar
  89. 89.
    Pizzella, G. 1990. Quattro episodi. Sapere, Ed. Dedalo.Google Scholar
  90. 90.
    Pizzella, G. 2006. Coincidences between GWs detectors EXPLORER and NAUTILUS in 1998, 2001, 2003 and 2004. The Eleventh Marcel Grossmann Meeting, Berlin.Google Scholar
  91. 91.
    Preparata, G. 1990. Superradiance effect in a gravitational antenna. Mod. Phys. Lett. A 5: 1–5.ADSCrossRefGoogle Scholar
  92. 92.
    Rapagnani, P. 1982. Development at 4.2 K of a capacitive resonant transducer for gravitational wave antennas. Il Nuovo Cimento C 5: 385–408.ADSCrossRefGoogle Scholar
  93. 93.
    Ronga, F. et al. 2009. Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER and comparison with the direct measurements with an aluminum superconductive bar. Nucl. Phys. Proc. Suppl. 190: 44–51.ADSCrossRefGoogle Scholar
  94. 94.
    Ruffini, R. and J.A. Wheeler. 1969. Relativistic Cosmology and Space Plattforms. Moore, A.F., Hardy, V., eds.Google Scholar
  95. 95.
    Solomonson, N. et al. 1994. Construction and performance of a low noise inductive transducer for the Louisiana State University gravitational wave detector. Rev. Sci. Instrum. 65: 174–181.ADSCrossRefGoogle Scholar
  96. 96.
    Suzuki, T. 1995. Search for continuous gravitational wave from pulsars with resonant detector. World Scientific, Singapore.Google Scholar
  97. 97.
    Taylor, J.H. and J.M. Weisberg. 1982. A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar 1913+16. Astrophys. J 253: 908–920.ADSCrossRefGoogle Scholar
  98. 98.
    Thorne, K.S. and others 1978. Quantum Nondemolition Measurements of Harmonic Oscillators. Phys. Rev. Lett. 40.Google Scholar
  99. 99.
    Thorne, K.S. 1987. Gravitational Radiation, in 300 years of Gravitation, edited by S.W. Hawking, W. Israel. Cambridge University Press, United Kingdom.Google Scholar
  100. 100.
    Tobar, M.E. et al. 1995. The University of Western Australia’s Resonant-bar Gravitational Wave Experiment. Aust. J. Phys. 48: 1007–1025.ADSCrossRefGoogle Scholar
  101. 101.
    Tobar, M.E. et al. 1999. Niobe: Improved noise temperature and back ground noise suppression. AIP Conf. Proc. 523, Pasadena.Google Scholar
  102. 102.
    Unruh, W.G. 1979. Quantum nondemolition and gravity = wave detection. Phys. Rev. D 19.Google Scholar
  103. 103.
    Weber, J. 1961. General Relativity and Gravitational Waves. Interscience, New York.Google Scholar
  104. 104.
    Weber, J. 1968. Gravitational-Wave-Detector Events. Phys. Rev. Lett. 20: 1307–1308.ADSCrossRefGoogle Scholar
  105. 105.
    Weber, J. 1969. Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22: 1320–1324.ADSCrossRefGoogle Scholar
  106. 106.
    Weber, J. 1984. Gravitons, neutrinos, and antineutrinos. Found. Phys. 14: 1185.ADSCrossRefGoogle Scholar
  107. 107.
    Weinberg, S. 1972. Gravitation and Cosmology. John Wiley & Sons.Google Scholar
  108. 108.
    Weiss, R. 1972. Electronically Coupled Broadband Gravitational Antenna. Quarterly Progress Report, Research Laboratory of Electronics (MIT) 105: 54.Google Scholar
  109. 109.
    Will, G.M. 1981. Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge, United Kingdom.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFN Laboratori Nazionali di Frascati, Frascati RMItaly

Personalised recommendations