Skip to main content

The history of time and frequency from antiquity to the present day


I will discuss the evolution of the definitions of time, time interval, and frequency from antiquity to the present day. The earliest definitions of these parameters were based on a time interval defined by widely observed apparent astronomical phenomena, so that techniques of time distribution were not necessary. With this definition, both time, as measured by clocks, and frequency, as realized by some device, were derived quantities. On the other hand, the fundamental parameter today is a frequency based on the properties of atoms, so that the situation is reversed and time and time interval are now derived quantities. I will discuss the evolution of this transition and its consequences. In addition, the international standards of both time and frequency are currently realized by combining the data from a large number of devices located at many different laboratories, and this combination depends on (and is often limited by) measurements of the times of clocks located at widely-separated laboratories. I will discuss how these measurements are performed and how the techniques have evolved over time.

This is a preview of subscription content, access via your institution.


  1. J. Jespersen, J. Fitz-Randolph, From Sundials to Atomic Clocks: Understanding Time and Frequency (Dover Publications, Inc., Mineola, New York, 1999), Chap. 3.

  2. T. Jones, Splitting the Second: The Story of Atomic Time (Philadephia, PA, Institute of Physics, 2000), Chap. 2.

  3. G.S. Hawkins, J.B. White, Stonehenge Decoded (Hippocrene Books, New York, 1988).

  4. E.G. Richards, Mapping Time: The Calendar and its History (Oxford University Press, Oxford, 1998), Chap. 2.

  5. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary Office, London, 1961, Chap. 14.

  6. F. Cabrol, The Catholic Encyclopedia (Robert Appleton Company, New York, 1912), Chap. 13.

  7. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary Office, London, 1961, Chap. 3.

  8. L. Essen, J.V.L. Parry, An Atomic Standard of Frequency and Time Interval: a Cesium Resonator, Nature 176, 280-282 (1955.) See also The Cesium Resonator as a Standard of Frequency and Time, Phil. Trans. Roy. Soc. London A 250, 45-69 (1957) by the same authors.

    ADS  Article  Google Scholar 

  9. W. Markowitz, R. Glenn Hall, L. Essen and J.V. L. Parry, Frequency of Cesium in Terms of Ephemeris Time, Phys. Rev. Lett. 1, 105-107 (1958).

    ADS  Article  Google Scholar 

  10. D.D. McCarthy, P.K. Seidelmann, Time: From Earth Rotation to Atomic Physics (Weinheim, Germany, Wiley-VCH GmbH), Chap. 12.

  11. S. Leschiutta, The Definition of the Atomic Second, Metrologia 42, S10-S19 (2005).

    ADS  Article  Google Scholar 

  12. Resolution 1 of the 13th Conférence Générale des Poids et Mesures (CGPM), available at: (1967).

  13. Resolution 9 of the 13th Conférence Générale des Poids et Mesures (CGPM), available (1960).

  14. T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia 51, 174-182 (2014).

    ADS  Article  Google Scholar 

  15. W.M. Itano, L.L. Lewis and D.J. Wineland, Shift of 2S1/2 Hyperfine Splittings due to Blackbody Radiation, Phys. Rev. A 52, 1233-1235 (1982).

    ADS  Article  Google Scholar 

  16. T.F. Gallagher, W.E. Cooke, Interactions of Blackbody Radiation with Atoms, Phys. Rev. Lett. 42, 835-839 (1979).

    ADS  Article  Google Scholar 

  17. G. Becker, Uncertainty of Cesium-Beam Time Standards due to Beam Asymmetry, IEEE Trans. Inst. Meas. 29, 297-300 (1980).

    ADS  Article  Google Scholar 

  18. B. Guinot, Application of General Relativity to Metrology, Metrologia 34, 261-290 (1997).

    ADS  Article  Google Scholar 

  19. N.F. Ramsey, Molecular Beams (The Clarendon Press, Oxford, 1956), Chap. XIV.

  20. N.F. Ramsey, Molecular Beams (The Clarendon Press, Oxford, 1956), Chap. X.

  21. H.J. Gerritsen, G. Niehuis, Multidirectional Doppler pumping: A new method to prepare an atomic beam having a large fraction of excited atoms, Appl. Phys. Lett. 26: 347-349 (1975).

    ADS  Article  Google Scholar 

  22. M. Arditi, J.L. Picque, A cesium beam atomic clock using laser optical pumping, Preliminary tests, J. Phys. Lett. 41: L379-L381 (1980).

    Article  Google Scholar 

  23. C. Salomon, J. Dalibard, W. Philips, A. Clairon and S. Guellati, Laser cooling of cesium atoms below 3 μK, Europhys. Lett. 12: 683-688 (1990).

    ADS  Article  Google Scholar 

  24. J.R. Zacharias, Precision Measurements with Molecular Beams, Minutes of the 1954 Annual Meeting of the American Physical Society, 28-30 January, 1954, Phys. Rev. 94: 751 (1954).

    Google Scholar 

  25. A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S.N. Lea and M. Bouhara, A cesium fountain frequency standard: preliminary measurements, IEEE Trans. Instr. Meas. 44: 128-131 (1995).

    Article  Google Scholar 

  26. T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia 51: 174-182 (2014).

    ADS  Article  Google Scholar 

  27. J. Guéna, P. Rosenbusch, Ph. Laurent, M. Abgrall, D. Rovera, G. Santarelli, M.E. Tobar, S. Bize and A. Clairon, Demonstration of a Dual Alkali Rb/Cs Fountain Clock, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 57, 647 (2010).

    Article  Google Scholar 

  28. The International System of Units, Bureau International des Poids et Mesures, Appendix 2, “Practical Realization of the Unit of Time”, Published online as SIApp2sen.pdf at:

  29. J.L. Hall, Nobel Lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78: 1279-1295 (2006).

    ADS  Article  Google Scholar 

  30. L. Hollberg, S. Diddams, A. Bartels, T. Fortier and K. Kim, The Measurement of Optical Frequencies, Metrologia 42, S105-S124 (2005).

    ADS  Article  Google Scholar 

  31. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik and P.O. Schmidt, Optical Atomic Clocks, Rev. Mod. Phys. 87, 637-701 (2015).

    ADS  Article  Google Scholar 

  32. S. Droste, F. Ozimek, Th. Udem, K. Predehl, T.W. Hasch, H. Schnatz, G. Grosche and R. Holzwarth, Optical Frequency Transfer over a Single-Span 1840 km Fiber Link, Phys. Rev. Lett. 111, 110801 1-5 (2013).

    Article  Google Scholar 

  33. L.C. Sinclair, F.R. Giorgetta, W.C. Swann, E. Baumann, I.R. Coddington and N. Reynolds Newbury, The impact of turbulence on high accuracy time-frequency transfer across free space, Optical Society of America, Conference on Imaging and Applied Optics, Arlington, Virginia, June 23-27, 2013, available at:

  34. J. Flury, Relativistic Geodesy with Clocks, Proc. 2015 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum, Denver, Colorado, 12–16 April 2015, in press.

  35. Web page of The Royal Museum at Greenwich, available at:

  36. B. Guinot, History of the Bureau International de l’Heure, Astronomical Society of the Pacific, Conference Series, edited by S. Dick, D. McCarthy and B. Luzum (2000), Vol. 208, pp. 175-184.

  37. C. Audoin, B. Guinot, Les Fondements de la mesure du temps (Masson, Paris, 1998).

  38. A. Lambert, Le Bureau International de l’heure, son rôle, son fonctionnement, Annuaire du Bureau des Longitudes, Paris, Gauthier-Villars, 1940.

  39. G. Bigourdan, A. Lambert, N. Stoyko and B. Guinot, Bulletin Horaire, Paris, Observatoire de Paris, 1922-1967 (19 volumes).

  40. G. Bigourdan, Corrections des signaux horaires déterminées par le Bureau International de l’heure, Paris, Gaithier-Villars, 1920-1924.

  41. Wireless Time Signals: Radio-Telegraphic Time and Weather Signals Transmitted from the Eiffel Tower and Their Reception, published by Paris Bureau of Longitudes, E & F. N. Spon Ltd., New York, 1915.

  42. M.A. Lombardi, G.K. Nelson, WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio, J. Res. of NIST 119, 25-54 (2014). See also the references in this article.

    Article  Google Scholar 

  43. H.J. Walls, QST Magazine, October, 1924, p. 9.

  44. R.T. Cox, Standard Radio Wavemeter, Bureau of Standards Type R 70B, J. Opt. Soc. Am. 6, 162-168 (1922).

    ADS  Article  Google Scholar 

  45. C. Moon, A Precision Method of Calibrating a Tuning Fork by Comparison with a Pendulum, available on the web at: (1929).

  46. Lissajou Figures, Encyclopedia Britannica. See also, J.D. Lawrence, A Catalog of Special Plane Curves (Dover, New York, 1972), pp. 178-183.

  47. W.G. Cady, United States Patent 1,472,583, October 30, 1923.

  48. Captain J.L. Jayne, The Naval Observatory Time Service and How to Use its Radio Signals, The Keystone: Annual Convention of the American National Retail Jewelers’ Association, 1913, pp. 129-135.

  49. A.H. Orme, Regulating 10 000 Clocks by Wireless, Technical World Magazine, October 1913, pp. 232-233.

  50. See also Wikipedia article “VLF Transmitter Cutler”.

  51. T.H. White, D.C. Washington, AM Station History, 2006. Web page at

  52. W.G. Cady, United States Patent 1,450,246, April, 1923.

  53. G. Hefley, The Development of Loran-C Navigation and Timing, National Bureau of Standards Monograph 129, Washington, D. C., Government Printing Office, 1972.

  54. B. Guinot, E. Felicitas Arias, Atomic Time-Keeping from 1955 to the present, Metrologia 42, S20-S30 (2005).

    ADS  Article  Google Scholar 

  55. B. Guinot, Some Properties of Algorithms for Atomic Time Scales, Metrologia 24, 195-198 (1987).

    ADS  Article  Google Scholar 

  56. R.A. Nelson, D.D. McCarthy, S. Malys, J. Levine, B. Guinot, H.F. Fliegel, R.L. Beard and T.R. Bartholomew, The Leap Second: Its History and Possible Future, Metrologia 38, 509-529 (2001).

    ADS  Article  Google Scholar 

  57. D.D. Davis, B.E. Blair, J.F. Barnaba, Long-term Continental U. S. Timing System via Television Networks, IEEE Spectrum 8: 41-52 (1971).

    Article  Google Scholar 

  58. Annual Report on Time Activities of the BIPM, Sèvres, France, BIPM, 2008, Vol. 3. Table 1. The more recent reports are available on line at:

  59. IERS Bulleting A is available at: and can also be received by e-mail with a request to

  60. IERS Bulletin C is available at: and can also be received by e-mail.


  62. J. Levine, The Statistical Modeling of Atomic Clocks and the Design of Time Scales, Rev. Sci. Instr. 83, 012201-28 (2012).

    Google Scholar 

  63. G. Petit, F. Arias, A. harmegnies, G. Panfilo and L. Tisserand, UTCr: A rapid realization of UTC, Metrologia 51, 33-39 (2014).

    ADS  Article  Google Scholar 

  64. R.B. Blackman, J.W. Tukey, The Measurement of Power Spectra (Dover Publications, New York, 1958).

  65. Circular T is published monthly and is available on the BIPM web site as:

  66. G. Panfilo, E.F. Arias, Algorithms for TAI, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 57, 140-150 (2010).

    Article  Google Scholar 

  67. G. Panfilo, A. Harmegnies and L. Tisserand, A New Prediction Algorithm for the Generation of International Atomic Time, Metrologia 49, 49-56 (2012).

    Article  Google Scholar 

  68. J. Azoubib, M. Granveaud and B. Guinot, Estimation of the Scale Unit Duration of Time Scales, Metrologia 13:87-93 (1977).

    ADS  Article  Google Scholar 

  69. E.K. Smith, S. Weintraub, The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE 41, 1035-1037 (1953).

    Article  Google Scholar 

  70. B.E. Blair, Time and Frequency Dissemination: An overview of Principles and Techniques, National Bureau of Standards Monograph 140, Chapter 10, Annex A, Washington, DC, US Government Printing Office, 1974.

  71. P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna Press, Lincoln, 2006). Chap. 2.

  72. International GNSS Service, available on the web at: The service provides a number of precise ephemerides and clock products with delays ranging from a few hours for the “Ultra-Rapid” ephemerides derived from observations to 12–18 days for the “Final” products. The accuracies of the final products are approximately 2.5 cm for the satellite orbits and 75 ps RMS for the satellite and stations clocks.

  73. E.D. Kaplan, C.J. Hegarty, Understanding GPS: Principles and Applications, 2nd edn., edited by Boston M.A. (Artech House, 2006), Chap. 7, p. 311ff.

  74. J. Guo, R.B. Langley, A New tropospheric propagation delay mapping function for elevation angles down to 2°, Proc. Of the Institute of Navigation ION/GPS Conference, Portland, Oregon, Sept. 9–12, 2003.

  75. A.E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. B 2, 3227-3246 (1972).

    Google Scholar 

  76. P. Axelrad, K. Larson and B. Jones, Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach California, Sept. 13-16, 2005, pp. 2638-2648.

  77. G. Hefley, The Development of Loran-C Navigation and Timing, NBS Monograph 129, Boulder, Colorado, National Bureau of Standards, October, 1972.

  78. D.D. Davis, J.L. Jespersen and G. Kamas, The use of television signals for time and frequency dissemination, Proc. IEEE 58, 931-933 (1970).

    ADS  Article  Google Scholar 

  79. D.W. Allan, Time transfer using nearly simultaneous reception times of a common transmission, Proc. IEEE 60, 625-627 (1972).

    ADS  Article  Google Scholar 

  80. G. Petit, Z. Jiang, GPS all in view time transfer for TAI computation, Metrologia 45, 35-45 (2008).

    ADS  Article  Google Scholar 

  81. D.L. Mills, Computer Network Time Synchronization, 2nd edn. (CRC Press, Boca Raton, Florida), p. 64ff.

  82. Z. Jiang, H. Konaté and W. Lewandowski, Review and Preview of Two-way Time Transfer for UTC generation – from TWSTFT to TWOTFT, Proc. Joint Conference of the Frequency Control Symposium and the European Time and Frequency Forum, 2013, pp. 501–504. Available on the web at:

  83. Z. Jiang, G. Petit, Combination of TWSTFT and GNSS for accurate UTC time transfer, Metrologia 46: 305-314 (2009).

    ADS  Article  Google Scholar 

  84. P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna Press, Lincoln, 2006). Chap. 2, p. 48ff.

  85. J.C. Eidson, Measurement, Control, and Communication using IEEE 1588 (Springer-Verlag, London, 2006), Chap. 5.

  86. M. Rost, D. Piester, W. Yang, T. Feldmann, T. Wübbena and A. Bauch, Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps, Metrologia 49: 772-778 (2012).

    ADS  Article  Google Scholar 

  87. J.A. Barnes, D.W. Allan, Two papers on the statistics of precision frequency generators, National Bureau of Standards Technical Report 8878, 1965. Available from the publications list at:, publication 224.

  88. D.W. Allan, J.A. Barnes, A modified Allan variance with increased oscillator characterization ability, Proc. 35th Annual Frequency Control Symposium, 1981, pp. 470-475. Available from the publications list at:, publication 560.

  89. D.A. Howe, A total estimator of the Hadamard function used for GPS operations, Proc. 32nd Precise Time and Time Interval Planning and Applications Meeting, Nov. 29, 2000, pp. 255-268. Available from the publications list at:, publication 1431.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Judah Levine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levine, J. The history of time and frequency from antiquity to the present day. EPJ H 41, 1–67 (2016).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Global Position System
  • Path Delay
  • Frequency Drift
  • Atomic Clock
  • Global Position System Satellite